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ABSTRACT 

Listeria monocytogenes is a ubiquitous, pathogenic foodborne bacterium, typically 

associated with post-processing contamination of ready-to-eat meats. Control of this 

pathogen has been a research topic for years, with more recent work investigating the use of 

novel naturally-produced antimicrobials. Methanobactin is a novel, chromopeptide recently 

isolated from the methanotroph, Methylosinus trichosporium OB3b. Its recent 

characterization has placed it in a new class of compounds now known as chalkophores, 

which are analogous to iron-binding siderophores. While it is thought to possibly serve 

multiple physiological roles involving copper metabolism in this bacterium, nothing is 

known regarding its potential as an antimicrobial. Our research focused on the use of 

copper-bound methanobactin (Mb-Cu) to control L. monocytogenes, thus the objectives of 

our studies were: (1) Determine the minimum inhibitory concentration (MIC) of Mb-Cu, at 

different pH values, and its effect on cell viability. (2) Optimize Mb-Cu activity by 

combining it with various surfactants. (3) Evaluate the anti-listerial efficacy of Mb-Cu, 

sodium lauryl sulfate (SLS), and their combination as surface treatments on frankfurters 

formulated with and without sodium lactate (NaL). (4) Gather preliminary evidence 

regarding the potential mode of action of Mb-Cu against L. monocytogenes. At pH 5.5 to 

7.3, the MIC (4.11 mM) of Mb-Cu was lowest at pH 6.0, while the bactericidal action at the 

MICs ranged from 3.34- to 4.87-log reductions of the pathogen. Combination with Tween 

20 or 80 lowered Mb-Cu activity while SLS enhanced it, which lowered the MIC from 2.06 

to 1.03 mM. AtpH 5.75, SLS (0.25%) + 1.03 mM Mb-Cu reduced L. monocytogenes 

populations by 5.33-log cycles, whereas 2-fold higher concentrations of Mb-Cu alone were 
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required to achieve this same reduction. On frankfurters after 24-h storage, 1% SLS + 10 

mM Mb-Cu reduced L. monocytogenes by 1.91-2.66 log-cycles, extended the lag phase in 

the presence of NaL, and prevented counts from exceeding initial populations during 

storage at 4°C. In buffer, Mb-Cu reduced L. monocytogenes and inhibited respiration in a 

dose-dependent manner. Some leakage of UV-absorbing material was detected without cell 

lysis. Evidence points to the cell membrane as the potential biological target of Mb-Cu 

against L. monocytogenes. 
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CHAPTER 1. GENERAL INTRODUCTION 

INTRODUCTION 

The prevention of contamination and growth of pathogenic foodborne 

microorganisms is a top priority among food processors. Justifiably, relentless efforts are 

dedicated to prevent an outbreak of foodbome-related illness, because the cost of medical 

aid, decreased consumer confidence, and product recalls, will threaten a company's 

existence. Listeria monocytogenes is a well-documented, deadly (20-30% mortality rate) 

foodborne bacterium that poses a particular problem to the food industry and consumers, 

due to the high mortality rate of listeriosis, its ubiquity in nature, and ability to grow at 

refrigeration temperatures. It is estimated that there are -2500 cases of foodborne 

listeriosis in the United States each year, and immuno-compromised persons are very 

susceptible to listerial infections, i.e. young, elderly, and ill populations. Unfortunately the 

pathogen can also infect prenatal children and result in abortion or stillbirth. 

L. monocytogenes is considered a hardy organism because it can tolerate high salt 

concentrations, and display growth in the absence of oxygen and at refrigeration 

temperatures. Consumption of ready-to-eat (RTE) meats, including poultry deli meats and 

frankfurters has been implicated in major multi-state listeriosis outbreaks, resulting in a 

significant number of deaths. In addition to this organism's ability to proliferate on a 

number of foods, its persistence in the food processing environment makes it a potential 

post-processing contaminant. This, along with the uncertain infective dose and high fatality 

rate associated with listeriosis, led the U.S. Department of Agriculture Food Safety and 

Inspection Service (USDA-FSIS) to establish a "zero-tolerance" policy for its presence in 
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RTE meat products. In 2003, the USDA-FSIS tightened regulations even further by 

establishing an interim final rule, mandating food processors to choose from three 

alternatives. This has encouraged food processors to implement a postlethality treatment(s) 

to reduce or eliminate L. monocytogenes, and/or antimicrobial agents or processes to limit 

or suppress the growth of the pathogen throughout the shelf life of their products. While 

strict regulations are in place to control L. monocytogenes on RTE meat products, the 

consuming public currently shows a demand favoring foods that are minimally processed or 

that are produced to include more natural food safety measures. This is yet another major 

challenge for the food industry. There has been increased research interest in a variety of 

natural compounds, to include in hurdle technology interventions that can be used in 

product formulation or as surface treatments for meats by way of package incorporation, 

films, dips, and sprays, to control the growth of L. monocytogenes. The advantage of 

hurdle technology is that while presenting several barriers to microbial growth, lower 

amounts of individual antimicrobials can be used to enhance antimicrobial activity. 

Organic acids and their salts have been used for years, while other biopreservative 

candidates for food use include plant-derived compounds, i.e. spices, essential oils, 

peptides, and other extracts. Also, a variety of bacterial metabolites have been evaluated 

for their antimicrobial properties including proteinaceous compounds such as various 

bacteriocins and siderophores. Siderophores are iron-chelating agents, and most of the 

work done on these compounds has focused on potential medical applications. 

Bacteriocins, however, have received a great deal of attention for their capacity to destroy 

certain pathogenic microorganisms in foods. Both of these classes of compounds are found 
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widespread in nature, however, nisin is the only bacteriocin currently allowed in foods, in 

its purified form. Research efforts are uncovering new and uncharacterized proteinaceous 

compounds that may have potential applications to control foodborne pathogenic 

microorganisms. 

Methanobactin is a novel extracellular chromopeptide, produced by the methane-

oxidizing bacterium, Methylosinus trichosporium OB3b, an important organism involved in 

global carbon cycling. This compound appears to fulfill multiple physiological roles for the 

producer-organism including copper sequestration and/or detoxification, as well as 

delivery. Its recent characterization has placed it in a new class of compounds now known 

as chalkophores, for fulfilling the analogous role of iron-binding siderophores. It is very 

difficult to compare methanobactin with other biopreservatives because it only shares 

similarities with groups of compounds, i.e. bacteriocins and siderophores. Methanotrophs 

have been examined for use in single-cell protein (SCP) production due to their ease of 

cultivation. Thus it seems feasible to explore the potential of this compound from an 

organism such as this for use as a biopreservative. There is no published research on the 

potential antimicrobial application of methanobactin, thus the work within this dissertation 

describes the antimicrobial efficacy of this naturally-produced compound against L. 

monocytogenes. 

In 2004, the USDA-FSIS reported that the L. monocytogenes Interim Final rule had 

improved the safety of RTE meats and poultry, where recalls dropped one-third from 2002 

to 2004. However, earlier this year, the United States Center for Disease Control and 

Prevention (CDC) reported that the U.S. fell short of its 2005 goal to reduce cases of 
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foodborne listeriosis by 50 percent. In light of this recent announcement it seems clear that 

there are still contributions and improvements that can be made to control L. 

monocytogenes in foods. As mentioned, this may include exploring newer technologies, 

food preservation methods, and novel naturally-produced compounds as consumer opinion 

and needs evolve. 

DISSERTATION ORGANIZATION 

This dissertation is a compilation of work that includes a literature review (chapter 

2) pertaining to the research described here as four journal articles (chapters 3 - 6), 

followed by general conclusions (chapter 7). It is the author's intent to submit chapters 3 

and 6 to Applied and Environmental Microbiology, and chapters 4 and 5 to the Journal of 

Food Protection. The paper entitled, "Antimicrobial efficacy of methanobactin against 

Listeria monocytogenes Scott A in laboratory medium" was presented at the International 

Association for Food Protection 2005 Annual Meeting in Baltimore, MD (August 14-17, 

2005), and the Iowa State University Institute for Food Safety and Security's 1st Annual 

Symposium in Ames, LA (April 19,2006). The paper entitled, "Bactericidal activity of 

methanobactin in combination with various surfactants against Listeria monocytogenes 

Scott A" was also presented at the latter event, and has been accepted for presentation at the 

International Association for Food Protection 2006 Annual Meeting in Calgary, Alberta, 

Canada (August 13-16, 2006). References can be found at the end of each chapter with the 

exception of this one and chapter 7, and follow the format of the aforementioned journals. 
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CHAPTER 2. LITERATURE REVIEW 

LISTERIA MONOCYTOGENES 

History 

The first listeria-like microorganism found in human tissue was reported by Hayem 

in 1881 (Gray, 1957). A similar bacterium was observed in Germany by Henle in 1893 and 

in Sweden by Hulphers in 1911. It wasn't until 1926 that Murray and coworkers first 

described the bacterium, Bacterium monocytogenes, as the cause of monocytosis in infected 

laboratory rabbits and guinea pigs (Murray et al., 1926). The following year, the same 

bacterium was isolated by Pirie from tissues of gerbils in South Africa and he called it 

Listerella hepatolytica in honor of Lord Lister (Pirie, 1927). When it became clear that it 

was the same microorganism, Murray and Pirie agreed to call it Listerella monocytogenes 

(Seeliger and Jones, 1986), but it was given its present name by Pirie in 1940 (Pirie, 1940). 

Listeria monocytogenes was first isolated from sheep by Gill in 1929 and then from humans 

by Nyfeldt (Gray and Killinger, 1966). L. monocytogenes is now recognized as one of the 

most problematic and dangerous human foodborne pathogens. Countless studies have been 

conducted to understand the nature of this microorganism and ways by which it can be 

controlled in the food processing environment. 

Identification 

L. monocytogenes is a small (0.5 % 1.0-2.0 gm), regular, gram-positive, non-

sporeforming, rod-shaped bacterium with rounded ends that can be found as single cells as 

well as in short chains. It can also appear spherical, and may be confused with streptococci. 
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L. monocytogenes, a microaerophilic, facultative anaerobe, tests positive for catalase, 

negative for oxidase, and also produces a (^-hemolysin which results in zones of clearing on 

blood agar (Rocourt, 1999). The CAMP (Christie-Atkins-Munch-Peterson) test is 

considered as a definitive test for the presence of L. monocytogenes. A positive CAMP test 

in the presence of Staphylococcus aureus or Rhodococcus equi is a positive presumptive 

test for a L. monocytogenes isolate. When L. monocytogenes is grown in the presence of 

these two organisms, hemolysin is produced synergistically. This is possibly due to the 

action of a phosphatidylinositol-specific or phosphatidylcholine-specific phospholipase C 

from L. monocytogenes, and a sphinogmyelinase from S. aureus (McKellar, 1993). 

L. monocytogenes also hydrolyzes sodium hippurate and esculin, and tests negative 

for HzS. When grown on nutrient agar with Henry illumination, the bacterial colonies 

appear mostly smooth, 0.2-0.8 mm in diameter, and bluish-gray with a blue-green hue after 

24-48 hours at 35-37°C (Lachica, 1990). A commonly used selective media used for its 

isolation is modified oxford (MOX) agar, where selectivity and differentiation is based on 

the presence of lithium chloride (LiCl), two antibiotics, and esculin hydrolysis. These are 

all tests that can help identify a Listeria spp. isolate. The organism is highly motile where 

peritrichous flagella allow it to exhibit tumbling motility in a narrow growth range. When 

the organism is grown between 20 and 25 °C, flagellin is produced and assembled on the 

outside of the cell, but production is drastically reduced at 37°C (Peel et al., 1988). L. 

monocytogenes is a mesophile that has psychrotrophic properties displaying growth 

between -0.4 and 50°C (Walker and Stringer, 1987; Junttila et al., 1988) 
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Growth Requirements and Characteristics 

L. monocytogenes is not a fastidious microorganism and the nutritional requirements 

are typical of many other gram-positive bacteria. It can grow well in common media such 

as brain heart infusion, trypticase soy, and tryptose broths, where reduced oxygen and 5-

10% carbon dioxide have been found to enhance growth. Growth factors include four B-

vitamins: biotin, riboflavin, thiamine, and thioctic acid, and six amino acids: arginine, 

cysteine, glutamine, isoleucine, leucine, and valine (Premarante et al., 1991; Glaser et al., 

2001; Welshimer, 1963). While the biosynthetic pathways for the four vitamins are 

missing or incomplete, the pathways for the listed amino acids have been identified. Thus, 

the requirement for amino acids may be due to repression of some amino acid biosynthetic 

pathways in laboratory growth conditions (Glaser et al., 2001). 

Primary sources of nitrogen and carbon for L. monocytogenes are glutamine and 

glucose, and it lacks a complete tricarboxylic acid (TCA) cycle due to the absence of a-

ketoglutarate dehydrogenase, succinyl Co A synthetase, and succinic dehydrogenase (Trivett 

and Meyer, 1971; Kim et al, 2006). Examination of a schematic of the TCA cycle in this 

organism (Kim et al., 2006) shows that it is split into two independent half-cycles, with a 

reductive portion and an oxidative portion. The right side links central pathways of carbon 

catabolism and nitrogen assimilation and the left functions counterclockwise and is used for 

respiration coupled to fumarate reduction. L. monocytogenes has several fermentation 

pathways and can produce ATP through a complete respiratory chain (Patchett et al., 1991; 

Glaser et al., 2001). It is able to metabolize glucose to L(+)-lactic acid by the Embden-

Meyerhof pathway, and studies on carbohydrate fermentations revealed that under 



www.manaraa.com

8 

anaerobic conditions only hexoses and pentoses support growth, while lactose and maltose 

could also be used when grown in aerobic conditions (Pine et al., 1989; Daneshvar, 1989; 

Romick et al, 1996). 

As mentioned earlier, L. monocytogenes has a wide temperature range (-0.4-50°C) 

for growth while its optimum is between 30 and 37°C. It can survive freezing, and adapt to 

low temperatures by adjusting membrane fluidity and/or by the accumulation of compatible 

solutes such as glycine, betaine, proline, and carnitine (Annous et al, 1997; Beumer et al., 

1994; Ko et al., 1994). However its versatility in terms of temperature is not the only 

attribute that gives this microorganism its "hardy" reputation. 

L. monocytogenes is notably resistant to osmotic stress, and can survive at water 

activity below 0.93, second only to S. aureus with respect to pathogenic microorganisms in 

foods, though the growth range depends on interactions with acidity and temperature 

(Farber et al., 1992). It can grow in broth containing 10% (w/v) NaCl, and can survive in 

even higher salt concentrations (McClure et al., 1989; Sorrells and Enigl, 1990). Like that 

of cold shock stress adaptation, a major and well-characterized aspect of the salt tolerance 

of L. monocytogenes is the intracellular accumulation of glycine betaine (Sleator et al., 

1999). In addition, this pathogen can grow in the presence of 10% (w/v) bile, 0.025% (w/v) 

thallous acetate, 1.5% (w/v) lithium chloride and 0.04% (w/v) potassium tellurite. Unlike 

most other gram-positive bacteria, L. monocytogenes is able to grow on MacConkey agar 

(Jay, 2000). 

The influence of acidity on the growth and survival of L. monocytogenes is 

dependent on pH, acid type, temperature, water activity, salt concentration and nutrient 
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availability. Optimum pH for growth is 6-8, and the organism displays moderate tolerance 

to low pH, ranging from 4.1-9.6 (Jay, 2000; Conner et al., 1986). 

L. monocytogenes is able to utilize numerous exogenous siderophores for iron 

acquisition despite its inability to produce them (Coulanges et al., 1998). In fact esculetin, 

a hydrolysis breakdown product of esculin, has been shown to function as a siderophores 

for the organism (Coulanges et al., 1996). L. monocytogenes utilizes a citrate inducible iron 

uptake system (Adams et al., 1990), surface-bound reductase (Deneer et al, 1995), and the 

first reported putative extracellular iron reductase (Barchini and Cowart, 1996). 

Distribution and Transmission 

L. monocytogenes is ubiquitous in nature and widely found in plants, soil, dust, and 

surface water samples (McCarthy, 1990; Weis and Seeliger, 1975). It does not multiply in 

soil but can be transmitted to the soil from human and animal feces, sewage sludge, silage 

and decaying vegetation. Welshimer (1960) demonstrated that survival of L. 

monocytogenes in soil is dependent upon soil type and moisture content. Lakes, rivers, and 

inshore marine waters can also be contaminated via sewage, which can then infect animals 

directly (Dijkstra, 1982). The gastrointestinal tract of healthy animal species can harbor L. 

monocytogenes and since decaying vegetation is a natural environment for this 

microorganism, it is not surprising that the majority of grazing animals such as sheep, goats 

and cattle carry L. monocytogenes. The presence of the pathogen in feces of birds, pigs, 

rodents and other domestic animals is well documented (Gray and Killinger, 1966). These 

animals can carry the bacteria for several months without symptoms of listeriosis and can 
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products (Gray and Killinger, 1966). The incidence of L. monocytogenes shedding in 

animals has been shown to be affected by diet (Low et al., 1995) and stress level (Fenlon, 

1999). Like many other mammals, humans can harbor L. monocytogenes in the intestinal 

tract without any apparent systems, where it is estimated that around 5 to 10% of the human 

population are carriers (Salyers and Whitt, 1994). 

It is well established that any fresh food product of animal or plant origin could 

potentially harbor varying numbers of L. monocytogenes, due to its widespread distribution 

in animals and the environment. There are, however, certain foods that have been 

associated with L. monocytogenes contamination such raw milk, soft cheeses, fresh and 

frozen meat, poultry, seafood products, and fruits and vegetables. Its prevalence in milk 

and dairy products has received much attention because of early outbreaks (Jay, 2000; 

Farber and Peterkin, 1991), but attention has now shifted to post-process contamination of 

ready-to-eat (RTE) meat products (Tompkin, 2002; Glass and Doyle, 1989; Samelis and 

Metaxopoulos, 1999; Beumer et al., 1996; Fenlon et al., 1996). Because L. monocytogenes 

is an intracellular pathogen it can be found in interior muscle cores of animals as well. For 

example, Johnson et al. (1988) demonstrated that the pathogen can be present in muscle 

tissues of Holstein cows at levels of approximately 140-280 CFU/g when animals were 

inoculated intravenously two days before slaughtering. Thus, in addition to previously 

mentioned potential post-processing contamination, inadequately processed meats from 

infected animals could be a threat to the consumer, and subsequent consumption can result 

in human listeriosis. 
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Listeriosis in Humans 

As previously mentioned, L. monocytogenes is an intracellular pathogen. It can 

enter the blood stream through the intestinal wall, thereby allowing the infection to spread 

anywhere in the body. Overall, the symptoms of the disease are variable depending on the 

susceptibility of the host, where typically in the average healthy adult, L. monocytogenes 

infections are usually asymptomatic or at most, produce mild influenza-like symptoms 

(Salyers and Whitt, 1994). In addition, the symptoms (fever, headache, fatigue, vomiting, 

and less commonly nausea and diarrhea) of infection typically occur within 7-60 days after 

consuming contaminated food (Wallace et al., 2000). These are some reasons why it has 

been difficult to establish an infective dose; however, it is suggested that <100 cells can 

cause disease in humans depending on the individual's immune system. The organism 

causes serious infections in children or adults with underlying conditions that compromise 

their immune responses (i.e. AIDS, cancer, diabetes, old age, and alcoholism). In such 

persons, listeriosis can cause central nervous system infections (i.e. encephalitis and 

meningitis) and fatal bacteremia. It seems that pregnancy increases a woman's 

susceptibility to infection. L. monocytogenes is one of the few bacteria that can cross the 

placenta, which normally acts as a very effective filtration barrier that prevents bloodbome 

pathogens from gaining access to the fetus. This organism can potentially infect the fetus 

resulting in miscarriage, stillbirth, preterm labor, or an infant born alive with a systemic 

listeriotic infection. About 25% of infected babies die from this disease (Salyers and Whitt, 

1994; Silver, 1998). 
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There are two types of neonatal listeriosis: early-onset disease and late-onset 

disease. Early-onset usually causes premature birth of infected infants showing signs of 

sepsis and sometimes granulomatosis infantiseptica. When a full-term infant shows 

symptoms several weeks after birth, the disease is called late-onset listeriosis (Visintine, 

1977). Late-onset disease includes meningitis about 93% of the time, but has a lower 

mortality rate than early-onset disease (McLauchlin, 1990). 

L. monocytogenes has several virulence factors and PrfA is the regulatory activator 

protein responsible for the coordination the virulence factors (Sheehan et al., 1994). The 

most significant virulence factor found in L. monocytogenes is listeriolysin O (LLO), due to 

overwhelming evidence that this molecule is responsible for the ^-hemolysis of 

erythrocytes and the destruction of phagocytic cells that engulf them. LLO has been shown 

to be highly homologous to streptolysin O (SLO) and pneumolysin (PLO). LLO has a 

molecular weight of 60,000 D and consists of 504 amino acids (Geoffroy et al, 1987; 

Mengaud et al, 1988). It is produced mainly during the exponential phase, with maximum 

levels after 8-10 hours of growth (Geoffroy et al, 1989). The gene that controls its 

production is the chromosomal hly gene. Purified LLO is activated by SH-compounds such 

as cysteine and inhibited by low quantities of cholesterol. LLO is active atapH of 5.5 but 

not at pH 7.0, suggesting the possibility of its activity in macrophage phagosomes which 

can have a pH of 4.6 (Karp, 1996). The LD50 of LLO for mice is about 0.8 jig, and it 

induces an inflammatory response when injected intradermally (Geoffroy, 1987). It is 

suggested that LLO and the other poreforming toxins (i.e. SLO and PLO) evolved from a 

single progenitor gene (Salyers and Whitt, 1994). 
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When L. monocytogenes is contracted orally, it first colonizes the intestinal tract, 

however the mechanisms are poorly understood. From the intestines, the organism invades 

tissues, including the placenta in pregnant women, and then enters the blood stream, from 

which it can invade other susceptible tissues. L. monocytogenes is an intracellular 

pathogen, therefore it has the capability to enter target cells and replicate intracellularly 

(Salyers and Whitt, 1994). It is thought that intemalin (Inl), encoded by the inlA gene, 

plays a role in adherence of the organism to the outside of an undifferentiated target cell 

(either intestinal crypt cells or M cells) and then stimulates phagocytosis into the cell. This 

protein is probably not essential for entry of the organism into phagocytes because these 

cells normally perform phagocytosis. Once inside the cell and surrounded by the vesicle 

membrane, L. monocytogenes uses LLO to create pores in the membrane, thereby escaping 

into the host cell's cytoplasm, where it can multiply rapidly (once every 50 minutes). 

Phosphatidylinositol-specific phopholipase C (PI-PLC) and phosphatidylcholine-specific 

phospholipase C (PC-PLC) are two other hemolysins that enable L. monocytogenes to 

escape one host cell and move into another neighboring host cell. These hemolysins are 

produced by the genes plcA and plcB, respectively. These are different from LLO by not 

forming pores, but instead by hydrolyzing membrane phospholipids like PI and PC (Salyers 

and Whitt, 1994). 

L. monocytogenes can then invade neighboring cells by the polymerization of actin 

at one end of the bacterium, by means of the ActA protein, encoded by the actA gene. This 

propels L. monocytogenes forward while the tail that is left behind, is depolymerized by the 
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host cell in a tug-of-war fashion (Salyers and Whitt, 1994). This is the process by which L. 

monocytogenes can systematically infect humans, thereby resulting in listeriosis. 

Major Outbreaks 

The first confirmed outbreak of listeriosis in North America was documented in 

1981 when 41 people became ill and 11 died after consuming contaminated coleslaw in 

Nova Scotia, Canada. The coleslaw had been prepared from cabbage that had been 

fertilized with raw sheep manure (Schlech et al., 1983). Another large outbreak that 

occurred in Boston, Massachusetts in 1983, was linked to pasteurized milk which resulted 

in 49 cases and 11 deaths. The milk came from a farm where cows were known to be 

infected with listeriosis, however no defects in the pasteurization process were found. It 

was concluded that post-processing contamination might have taken a place (Fleming et al., 

1983). The largest outbreak of listeriosis in North America occurred in California in 1985 

and apparently came from a Mexican-style soft cheese made from a mixture of 

inadequately pasteurized milk and raw milk. The outbreak resulted in 142 cases with 37% 

mortality rate of nonpregnant adults and 32% mortality rate of perinatals (Linnan et al., 

1988). 

L. monocytogenes is currently considered a post-processing contaminant of RTE 

meats because of its persistence in the processing plant environment and more recent 

outbreaks associated with RTE meats. In late 1998, a multi-state outbreak of listeriosis was 

attributed to the consumption of contaminated frankfurters produced by Bil Mar Foods, 

owned by Sara Lee. This outbreak caused 21 deaths and sickened one hundred people 
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(CDC, 1999). In December 2000, another major multi-state outbreak of listeriosis 

occurred, this time involving deli meats produced by Cargill Inc. Twenty-nine cases were 

reported, including 4 deaths, and 3 miscarriages (CDC, 2000). The most recent multi-state 

listeriosis outbreak occurring in the United States was associated with Pilgrim's Pride pre-

sliced turkey deli meat and occurred in northeastern United States. There were 46 

confirmed cases, 7 deaths, and 3 miscarriages or stillbirths. A poultry processing plant had 

two isolates from floor drains that were indistinguishable from the outbreak strains, based 

on pulsed-field gel electrophoresis (PFGE) profiles. Approximately 27.4 million pounds of 

fresh and frozen RTE turkey and chicken products were voluntarily recalled due to this last 

outbreak. 

RTE Meat Products and L. monocytogenes 

L. monocytogenes outbreaks have been associated with the consumption of raw or 

pasteurized milk, dairy products (especially soft Mexican cheeses), fresh meat and poultry, 

vegetables, paté, wieners, smoked mussels, goat, sausages, turkey franks, coleslaw, shrimp, 

and RTE meats (Jay, 2000). It is conceivable that L. monocytogenes could potentially be 

found on raw food products that enter a processing plant. Therefore, food processors are 

faced with a challenging task to control foodborne contamination by this organism because 

of its ubiquitous nature. 

As mentioned, RTE meat products have been implicated in major listeriosis 

outbreaks. Due to the nature of these meat products, they are at a particular high risk for 

contamination by L. monocytogenes. For example, normal frankfurter processing 
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conditions have been shown to be sufficient to eliminate the pathogen from the finished 

product (Zaika et al., 1990), if well controlled (Kaczmarek et al., 2005). However, this 

does not guarantee consumer safety because frankfurters may be consumed without further 

cooking or reheating. This risk of contamination of frankfurters with L. monocytogenes is 

attributed to post-processing contamination which occurs during peeling of the casings and 

before packaging of the product (Wenger et al., 1990; Palumbo and Williams, 1994). L. 

monocytogenes is a particular problem in these cured RTE meat products because, in 

general, it can grow to high numbers despite refrigerated storage, the presence of sodium 

chloride and nitrite salts, and the absence of atmospheric oxygen when vacuum-packaged 

(Lou and Yousef, 1999). Also, the pH of these meat products (-5.8-6.2) is not sufficiently 

low enough to suppress growth despite the presence of these other aforementioned hurdles, 

nor has the natural spoilage microflora shown to play a major role in retarding the growth 

of L. monocytogenes (Radin et al., 2006). 

Several surveys, which confirm the physiological evidence just mentioned, have 

been conducted to determine the incidence of the pathogen on RTE meats. In the United 

States, Wang and Murina (1994) examined 20 brands of retail wieners and found that for 19 

of the brands, the overall incidence of L. monocytogenes was 7.5%, where products of 20th 

brand was 71% positive. The liquid exudates harbored most of the pathogen indicating that 

contamination occurred after cooking, because these products are removed from their 

packages after cooking and repackaged for sale; this allows post-processing contamination 

from food handlers, equipment, or air. In Alberta, Canada, Tiwari and Alrenrath (1990) 

reported a 17% incidence of £. monocytogenes in 38 samples of retail wieners and 67 
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samples of sliced deli meat. Several surveys conducted in Europe revealed the presence of 

Listeria spp. (including L. monocytogenes) in a significant portion of RTE meats in retail. 

In Denmark, out of 304 samples of four types of packaged meat products, the percentage 

positives for L. monocytogenes shortly after packaging and at the sell-by date ranged from 

6-23% and 10-21%, respectively (Qvist and Liberski, 1991). These authors also studied the 

incidence of the pathogen in 15 vacuum-packaged product types, where overall there was a 

13.5% incidence (Qvist and Liberski, 1992). A nine-year survey from a coordinated food 

sampling program in the United Kingdom, established in 1995, revealed that 1.7% of sliced 

RTE meats were contaminated with Listeria spp. which was the highest contamination rate 

among other RTE products (Meldrum et al, 2005). Numerous surveys in other countries 

have also indicated similar contamination rates (Farber and Peterkin, 1999). 

The United States has the most rigid policy mandating a zero-tolerance for L. 

monocytogenes in RTE meats, meaning that any RTE meat containing this organism will be 

considered adulterated and, thus, subject to recall and/or seizure. In 2003, following the 

major outbreaks of listeriosis involving the consumption of RTE meat products, the United 

States Department of Agriculture Food Safety and Inspection Service (USDA-FSIS) 

established an interim final rule (FSIS, 2003), mandating food processors to choose from 

three alternatives to control L. monocytogenes in RTE meat and poultry products. 

Alternative 3 relies only on sanitation and has the most risks associated with it compared to 

the other alternatives. It is also the most demanding in terms of demonstrating compliance 

with regulatory authorities. This has encouraged food processors to implement Alternatives 

1 and 2, where the former states that the establishment is required to apply a postlethality 
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treatment (may be an antimicrobial agent) to reduce or eliminate the pathogen and an 

antimicrobial agent or process to limit or suppress growth of the pathogen. The latter is less 

stringent requiring the establishment to employ either a postlethality treatment or a growth 

inhibitor. 

Despite the very strict regulations food processors must comply, the consuming 

public places even higher demands on food companies. Favor for more minimally-

processed, more natural, nutritious, convenient, and yet safe food products is forcing 

processors to meet such demands. This has prompted research efforts to uncover and 

develop multi-hurdle approaches involving the use of naturally-occurring or naturally-

produced antimicrobials to control the growth of foodborne pathogenic microorganisms. 

Investigations on these types of compounds, in relation to L. monocytogenes and mainly 

meat products are discussed in the following section. 

USE OF NATURALLY-PRODUCED AND NOVEL ANTIMICROBIAL 
TREATMENTS TO CONTROL L. MONOCYTOGENES 

Plant- and Animal-Derived Compounds 

The most widely used antimicrobials that are found in plants are sorbic acid, 

benzoic acid, and their salts. Sorbic acid was first isolated from the oil of unripened 

rowanberries (Sofos and Busta, 1993) and is mainly used as a fungistat, but can inhibit 

germination and/or outgrowth of Clostridium botulinum (Sofos et al., 1979). When used 

alone, effectiveness is somewhat limited against L. monocytogenes (Dorsa et al., 1993; 

Lungu and Johnson, 2005). There are extensive reviews (Sofos and Busta, 1981) on the use 

of this antimicrobial; therefore, a comprehensive review on the antimicrobial effect of this 
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antimicrobial is not presented here. Benzoic acid is one of the oldest preservatives used, 

thus there is also a large body of literature on this antimicrobial as well. Benzoic acid 

occurs naturally in many plants, and cranberries are the most well recognized source of this 

organic acid (Chipley, 1993). While it performs much better at low pH, concentrations of 

1000-3000 ppm are bacteriostatic against L. monocytogenes, but modestly bactericidal (El-

Shenawy and Marth, 1988; Yousef et al., 1989). Activity is much improved when 

combined with other organic acids (El-Shenawy and Marth, 1989). Benzoic acid and other 

organic acids that can be found in plants are not necessarily restricted to plant sources, thus 

it should be kept in mind that there is cross-over among producer-groups (animal or 

microbial); nevertheless, these are naturally occurring substances. For example, benzoic 

acid can be a by-product of microbial degradation of hippuric acid or phenylalanine in 

fermented dairy products (Stijve and Hischenhuber, 1984). Caprylic, citric, fumaric, malic, 

succinic, and tartaric acids all have moderate activity, as well. Effectiveness against 

organisms is based on the proportion of undissociated to that of dissociated acid and 

lipophilicity of the substances (Doores, 1993). Soybean extracts metabolized by two molds 

generated phenols and acids that were found to be active against L. monocytogenes in fish 

and meat systems (McCue et al., 2005); anacardic acid from the cashew also displayed 

potent activity against gram-positive pathogenic bacteria (Himejima and Kubo, 1991). 

Additionally, smoke wood extracts have also been shown to be highly active against 

Listeria spp. (Sunen, 1998). 

A wide variety of plant spices, extracts, and essential oils have also been 

investigated for activity against L. monocytogenes. Aureli et al. (1992) tested 32 plant 
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essential oils against the pathogen and found that cinnamon, clove, origanum, pimento, and 

thyme were effective. Pimento oil displayed the most rapid activity while thyme reduced 

populations by 2 logs on pork meat after the first week of storage. On cooked beef, 

pimento extract was shown to inhibit the growth of jI. monocytogenes for 14 days, as well 

(Hao et al., 1998). Fyfe et al. (1997) found significant growth reduction (4-8 logs) in broth 

by using a combination of oils including anise, fennel, and basil. Also, garlic, clove, red 

hot chili (Leuschner and Ielsch, 2003), aind mustard flour (Rhee et al., 2003) have been 

shown to have moderate activity against the pathogen. On chicken frankfurters, clove oil (1 

and 2%) inhibited L. monocytogenes growth however the study lasted only 2 weeks. On 

meat and cheese, it was shown to have moderate activity as well (Vrina Menon and Garg, 

2001). On beef, four garlic compounds were tested against L. monocytogenes with greatest 

activity being shown to occur with the two sulfide compounds (Yin and Cheng, 2003). 

Cranberry/oregano surface treatments on fish and beef systems displayed low initial 

reductions and moderate inhibition during an 8-day study. Eugenol (an oregano essential 

oil) and cinnamaldehyde of cinnamon were bactericidal against L. monocytogenes at low 

concentrations in broth media (Gill and Holley, 2004). On meat and cheese, cinnamon 

displayed reductions of L. monocytogenes by 1-2 logs with limited inhibitory activity 

(Vrinda Menon et al., 2002). In laboratory media oregano, mint, dictamus, and sage 

inhibited the growth of L. monocytogenes (Flair-Flow Europe, 1999), while on beef 

oregano essential oil reduced populations of L. monocytogenes by 2-3 logs (Tsigarida et al., 

2000). Carvacrol and eugenol (Hao et al., 1998) are effective growth inhibitors of L. 

monocytogenes but encapsulation of them in surfactant micelles improves activity 
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(Gaysinsky et al, 2005a; Gaysinsky et al, 2005b). Incorporation of pure essential oils 

anise, basil, coriander, and oregano into chitosan films for meat packaging effectively 

reduced L. monocytogenes populations. In this study, oregano at 1 or 2% performed the 

best reducing populations by 3.6-4.0 logs (Zivanovic et al, 2005). Also, vanillin has been 

shown to be active against Listeria spp. (Fitzgerald et al, 2004), while hop extracts were 

highly inhibitory in broth, coleslaw, milk, and cheese (Larson et al, 1996). It is apparent 

that many studies have investigated the use of spices and essential oils to control L. 

monocytogenes and other pathogens (Hirasa and Takemasa, 1998), but the application for 

many of the aforementioned compounds may be limited to amounts that will not result in 

overpowering sensory profiles. As a result of this, these antimicrobials may be present in 

concentrations too low for effectiveness, thus requiring the use of additional preventive 

measures. 

Plants and animals also produce antimicrobial peptides as defense mechanisms, 

referred to as defensins. Thionin (abundant in leaves and seeds of plants), lipid transfer 

protein, snakin, and potato defensin were evaluated for activity against L. monocytogenes 

by Lôpez-Solanilla et al. (2003), in addition to some animal-derived peptides. Thionin and 

snakin were the most inhibitory, displaying MIC values of 2 and 10 pg/ml, respectively. 

Fabatins have been classified as novel plant peptides from the broad bean Vicia faba and 

noted for their activity of against bacteria; however L. monocytogenes was not included in 

the study (Zhang and Lewis, 1997). Maize kernels have been shown to possess novel 

antimicrobial peptides as well (Duvick et al., 1992). This demonstrates that there are likely 

many uncharacterized peptides yet to be discovered and tested for antimicrobial efficacy. 
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Protamine is a highly basic, polycationic peptide found in fish spermatozoan nuclei where 

its role is to compact genomic DNA. Studies indicate it is highly inhibitory to bacteria, 

including L. monocytogenes (Johansen et al., 1996; Johansen et al., 1997). Determined by 

broth dilution, protamine and magainin (from amphibian skin) MICs were both 10 ng/ml 

(Lôpez-Solanilla et al., 2003), however using agar dilution, Hansen and Gill (2000) showed 

that protamine could not inhibit L. monocytogenes until the media was at pH 6.0 or greater. 

The lowest MIC (50 ng/ml) occurred at pH 8.0. In fish and curry sauce, protamine at 5000 

ppm inhibited development of L. monocytogenes, however no activity was found in meat or 

poultry products. They concluded that protamine is not ideally suited for high-protein 

foods because its highly positive charge can interact with negative groups in proteins 

(Uyttendaele and Debevere, 1993). Insect defensins and cecropins have also displayed 

activity against bacteria (Kagan et al., 1990; Cociancich et al., 1993; Christensen et al., 

1988). 

Chitosan is a polysaccharide found in crustaceans that has been frequently studied 

for its use in packaging films. For example, L. monocytogenes could be inhibited on fresh 

chicken breast (Cooksey, 2005) and reduced (2 logs) on processed meats (Zivanovi et al, 

2005) by these means. When used in dips for skinless sausage yeast and molds were 

inhibited, however antimicrobial activity could be improved against bacteria, including L. 

monocytogenes when the compound was enzymatically and chemically degraded to smaller 

oligomers (Flair-Flow Europe, 1999). 

Lysozyme is a lytic enzyme found in many natural systems including tears, plant 

tissues, milk, and eggs (Conner, 1993) that breaks down peptidoglycan in the bacterial cell 
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wall, resulting in cell lysis. It is active against L. monocytogenes (Hughey and Johnson, 

1987), with bactericidal activity at 9.27 ng/ml in broth media (Proctor and Cunningham, 

1993). A study done by Hughey et al. (1989) demonstrated a marked increase in lysozyme 

activity against L. monocytogenes when used in conjunction with EDTA. Additionally, 

results showed that 4-log reductions could be achieved on vegetables, with lesser activity 

on meat products. Another enzyme that has been studied fairly extensively is 

lactoperoxidase. It is part of the lactoperoxidase system (includes an oxidizable substrate 

and H2O2) that generates hypothiocyanous acid and hypothiocyanate as the major active 

antimicrobials (Conner, 1993). Activity against L. monocytogenes has been shown (Kamau 

et al., 1990a) and it can sensitize cells to heat by as much as 10-fold (Kamau et al., 1990b). 

Although it has been traditionally used in milk, applications of the lactoperoxidase system 

in red meat (Kennedy et al., 2000) and a beef cube system (Elliot et al., 2004) prevented the 

growth of L. monocytogenes. Interestingly, both studies found that activity was highest at 

temperatures at which the pathogen can grow, but not optimally. 

Lactoferrin is an iron-binding glycoprotein present in cow's milk that has 

antimicrobial activity. It is reported to be effective against L. monocytogenes (Nagasawa et 

al., 1972) where activity is attributed to binding of iron thereby reducing accessibility of 

this micronutrient to organisms. A patent was issued to Naidu in 1999 to control the 

growth ofZ. monocytogenes and other pathogens on RTE meats by using a surface 

treatment that includes the use of immobilized lactoferrin (IM-LF). Lactoferricin is an 

antimicrobial peptide produced from lactoferrin by gastric pepsin cleavage. This 

breakdown product was found to be even more active against L. monocytogenes displaying 
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at least 4-log reductions in 30 minutes (31 ng/ml) and MIC values ranging from 0.3-9 

Hg/ml depending on strain and media type (Wakabayashi et al., 1992). Additionally, 

chloride salts were found to be antagonistic, thus increased MIC values. Conalbumin is 

another iron-binding protein found in egg whites that restricts the growth of bacteria by 

means similar to that of lactoferrin. It does not seem to be as effective, however, and it 

typically only extends the lag phase of the target organism (Conner, 1993). It has been 

reported that no single component of raw egg albumen can account for its antibacterial 

activity toward L. monocytogenes (Sionkowski and Shelef, 1990), and that along with high 

pH, lysozyme, conalbumin, and other compounds must work in concert for effectiveness 

(Wang and Shelef, 1991). 

Microbial-Derived Compounds 

Discussion on various types of antimicrobials that are produced by bacteria will be 

focused on those pertaining to potential food use. Although there are numerous types of 

antibiotics produced across the microbial world that surely are active against L. 

monocytogenes, they will not be discussed in this review because they lack relevance for 

use in foods. Sources of bacterial-derived compounds to control pathogenic 

microorganisms, including L. monocytogenes, have primarily come from lactic acid 

bacteria (LAB). Organic acids, and their salts, are among the most well studied compounds 

used to control the presence of this pathogen in foods. It is well established that the 

undissociated form of organic acids, such as lactic, acetic, and citric are 10-600 times more 

effective than the dissociated forms (Helander et al, 1997). Amezquita and Brashears 
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(2002) attributed the inhibition of L. monocytogenes on five different RTE meat products, 

in part, to acid production by protective LAB cultures when they were co-inoculated with 

the pathogen. This in situ production of organic acids by fermentation of LAB has also 

been shown to enhance the efficacy of bacteriocins as well (Winkowski and Montville, 

1992). 

Direct addition of these organic acids has been extensively studied for use as or in 

carcass washes (Tamblyn and Conner, 1997; Yang et al, 1998; Dorsa, 1997). There are 

also a vast number of studies that have been published that report the efficacy of post­

processing organic acid surface treatments against L. monocytogenes on RTE meat 

products. In line with the discussion on current problems associated with controlling the 

pathogen on RTE meats, the objective of these studies are in attempt to control the 

pathogen in the event of post-processing contamination. One of the earliest studies on the 

matter was done by Palumbo and Williams (1994). They reported that dipping frankfurters 

with 5% lactic or acetic acids gave ~l-log reductions and growth inhibition ofZ. 

monocytogenes (2-minute dips followed inoculation). When used alone, citric acid was not 

found to work as well when used alone. Similarly, L. monocytogenes on frankfurters that 

were dipped for 30 seconds with 3.4% (of an 88% solution) lactic acid displayed an 

extended lag phase (~6 weeks), while an aqueous solution of potassium lactate (KL) was 

less effective (Nunez de Gonzalez et al, 2004). Similar results were found by Samelis et 

al. (2001) on pork bologna. In another study, dipping frankfurters formulated with 

antimicrobials has been shown to generate minor reductions during storage (Barmpalia et 

al, 2004). Other studies demonstrate high initial reductions like the previously mentioned, 
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but growth inhibition effectiveness was less dramatic. For example, dipping frankfurters 

and bratwurst in 6% lactate and 3% diacetate solutions did not have any effect on delaying 

the growth of L. monocytogenes during storage (Glass et al., 2002). A study conducted by 

Lu et al. (2005) demonstrated that when frankfurters were dipped for 2 minutes in 2.5% 

solutions of lactic or acetic acid, initial populations of L. monocytogenes were reduced by 

0.7-2.1 log CFU/cm2, but also had little inhibitory effect during storage. Geomaras et al. 

(2006) demonstrated 1.0-1.8 log CFU/cm2 initial reductions ofZ. monocytogenes on 

frankfurters when dipped for 2 minutes in solutions of acetic acid (2.5%), lactic acid 

(2.5%), or potassium benzoate (5%), but inhibitory action during storage was limited. A 

study published a year earlier by these researchers reported similar findings for bologna and 

ham (Geomaras et al., 2005). Islam et al. (2002a) found that spraying chicken luncheon 

meat with very high concentrations of sodium benzoate and propionate had little effect on 

initial reductions and inhibition during storage of L. monocytogenes. When they used these 

solutions on turkey frankfurters, growth of the pathogen was delayed, but the storage study 

only lasted for 14 days (Islam et al., 2002b), which may indicate cured RTE meat products 

may be a more appropriate food for these applications. Perhaps the best demonstration of 

organic acid use on frankfurters was done by Murphy et al. (2006), where a combination of 

acetic, lactic, propionic, and benzoic acids along with steam pasteurization inhibited L. 

monocytogenes growth for 19 weeks. This indicates the importance of hurdle technology 

and potential synergistic behavior of organic acids. While the effectiveness of these 

compounds for use as surface treatments seems variable, collectively, there is a good 

indication that initial reductions of L. monocytogenes seems fair, however overall 
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bacteriostatic activity is limited. Sources of variation may be a result of differences in 

product formulation, product type, cure status, acid type and concentration, among others. 

In addition, organic acid salts have been extensively studied as antimicrobials in RTE meat 

formulations to prevent the growth of L. monocytogenes. Literature on this subject is 

discussed in the following section. 

Metabolic activities of LAB and others produce fermentation by-products and novel 

compounds in addition to organic acids. The fermentation by-product, diacetyl has broad 

antimicrobial activity at concentrations of 300-1000 ppm, but because it produces a marked 

butter flavor at 2-4 ppm, and in situ production by LAB is slightly lower yet, its 

contribution to preservation is limited (Helander et al., 1997). Reuterin (2-

hydroxypropionalaldehyde) is a non-proteinaceous metabolite of glycerol produced by 

Lactobacillus reuteri having a broad antimicrobial activity spectrum (Nout and Rombouts, 

1992). El-Ziney et al. (1999) investigated the efficacy of reuterin solutions on pork 

products, inoculated with L. monocytogenes and Escherichia coli 0157:H7. Reductions 

after 1 (500 Arbitrary Units/ml on cooked pork surfaces) and 7 (250 Arbitrary Units/ml in 

raw ground pork) days of storage at 7°C were 0.63 and 3 log CFU/cm2, respectively. In 

addition, E. coli 0157:H7 was far more sensitive to reuterin activity, and combination with 

5% lactic acid improved activity against both pathogens. On sausage surfaces, reuterin was 

reported to inhibit the growth of L. monocytogenes during storage at 5°C, however storage 

periods for both of these studies only lasted for 7 days (Kuleasan and Cakmakci, 2002). 

Production of H2O2 is a typical by-product of LAB because they lack peroxidase. Most 

work has investigated its use in raw milk and for sanitizing packaging materials (Lou and 
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Yousef, 1999). Interestingly, in situ production of this has been shown to activate the 

endogenous lactoperoxidase system in meats (Oyarzabal, 1998). Three novel 

antimicrobials were isolated from the culture filtrate of the LAB, Lactobacillus plantarum, 

including benzoic acid. Methylhydantoin, mevalonolactone, and cyclo(glycyl-L-leucyl) 

inhibited the growth of other LAB by 10-15% when used alone, but when all three were 

combined with 1% lactic acid, complete inhibition was achieved (Niku-Paavola et al., 

1999). Cyclic lipopeptides are compounds produced by many different groups of bacteria 

(Katz and Demain, 1977; Moffitt and Neilan, 2000); they are thought to have biosurfactant 

(Nielsen et al., 2002) and antimicrobial properties (Gerard et al., 1997), as well as promote 

swarming. 

Siderophores and siderophore-peptides are compounds produced by a variety of 

bacteria, where the former is well characterized. Studies determining potential use in foods 

are limited but will be discussed later in the chapter. 

The final major group of antimicrobials that warrants discussion regarding its use 

against L. monocytogenes in RTE meat products is bacteriocins. Other than organic acids, 

this class of compounds, defined as antimicrobial peptides produced by bacteria that are 

active against reasonably closely related strains, has been widely studied. Detailed 

discussion of their uses in RTE meats to destroy and inhibit the growth of L. 

monocytogenes, are discussed in a later section. 
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Lactates in Cured RTE Meat Formulations 

The incorporation of lactic acid salts (i.e. K+ and Na+) in RTE meat formulations are 

known to increase processing yields by increasing water holding capacity, but also increase 

flavor, shelf life and product safety. Formulation of RTE meats with lactates, in particular 

cured RTE meats, and its combination with sodium diacetate to produce synergistic activity 

are well established (Mbandi and Shelef, 2001). In-depth discussion of this latter 

compound is out of the scope of this review. In addition, there may be a trend in processors 

removing diacetates from formulations due to its strong vinegar-like odor and taste. RTE 

meat products, in particular frankfurters and sliced deli meats, were involved in the most 

recent listeriosis outbreaks. In this regard, most work has focused on the formulation of 

lactates in cured RTE meats versus non-cured meats, thus discussion is focused on the 

former. The USDA-FSIS presently permits the use of lactates at concentrations up to 4.8% 

by weight of total formulation in RTE meats (CFR, 2006). The mechanism of bacterial 

inhibition of lactates is not well understood, although there is some evidence that it can 

reduce water activity enough to sufficiently inhibit bacteria (Debevere, 1989). However, 

Weaver and Shelef (1993) found that 4% sodium lactate (NaL) in liver sausage did not 

lower the aw sufficiently enough to inhibit the growth of L. monocytogenes. Possible mode 

of action may arise from lowering the cytoplasmic pH by undissociated lactic acid and 

possibly by metal chelation (Shelef, 1994). Feedback inhibition and interference with 

proton transfer across the cell membrane also seem likely (Sofos, 1995). 

Most, but not all studies indicate that when used alone, >2% NaL is needed to 

reliably inhibit the growth of L. monocytogenes on RTE meats for the length of the 
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recommended commercial shelf life (-90 days in the case of frankfurters). Lactate 

formulation concentrations reported here are adjusted after taking into account that most of 

these studies use 60% solutions of lactate. A study conducted by Geomaras et al. (2006) 

showed that formulating frankfurters with 1.5% NaL did not inhibit the growth of L. 

monocytogenes on frankfurters for more than eight days. In addition, stress-hardened 

biofilm cultures were used as one of the three test inocula and 0.05% sodium diacetate was 

also included in the formulation. Stekelenburg (2003) demonstrated that unless diacetate 

was included, 1.8% KL inhibited L. monocytogenes for only 2 weeks on frankfurters when 

stored at 4°C, which agrees with studies by Glass et al. (2002). In this study 2.1% lactate 

did inhibit growth for at least 60 days. However, Nunez de Gonzalez et al. (2004) reported 

inhibition for 6 weeks using 2% NaL but higher concentrations were not evaluated. 

Formulating frankfurters with 1.8% NaL inhibited the growth of L. monocytogenes for 

almost 40 days at 4°C (Samelis et al., 2002). In the same study, combination with 

antimicrobial dips did not improve formulation activity; however addition sodium diacetate 

or glucon-8-lactone to the formulation resulted in inhibition for 120 days. In another study, 

at 10°C, this NaL concentration inhibited L. monocytogenes for approximately only 1 week 

in frankfurters, unless antimicrobial dips or other formulation ingredients were also 

employed (Barmpalia et al., 2004). An earlier study by this laboratory (Bedie et al., 2001) 

showed inhibition for approximately 50 days by 1.8% NaL at the same storage temperature, 

while 3.6% NaL inhibited growth for 120 days. In contrast to the aforementioned studies, 

Porto et al. (2002) demonstrated that when frankfurters were formulated to have a final 

concentration of 2% KL, growth of L. monocytogenes could be inhibited for 90 days at both 
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4 and 10°C. It should be noted that inoculum concentrations used in this study were also 

very low. Similar findings have been shown by previous work in our laboratory as well 

(unpublished data). Choi and Chin (2003) also found similar results with 2% NaL, however 

the storage study only lasted for 8 weeks. 

When 2% NaL was added to RTE ham, growth of L. monocytogenes was inhibited 

<7 days during storage at 4°C, while the addition of other formulation ingredients did not 

have a marked effect (Zhu et al., 2005). Similar findings were reported on incorporation of 

1.8% NaL into pork bologna formulations (Barmpalia et al., 2005). Incorporation of 2.5% 

NaL into beef bologna formulations inhibited the pathogen for the length of the storage 

study (45 days at 5°C), however populations started to proliferate at this point (Mbandi and 

Shelef, 2002). Models developed by Seman et al. (2002) demonstrated that formulating 

bologna, wieners, ham, or cotto salami with 1.5% KL with 0.15% sodium diacetate resulted 

in little to no growth of L. monocytogenes for both predicted and actual values. Other work 

done by this group also demonstrated that cure status has a dramatic effect on the efficacy 

of these antimicrobial formulations in RTE meat products, where the presence of curing 

agents increases activity (Legan et al., 2004). It is worth noting that many of these studies 

mentioned, show inhibition using 2% lactate for a major portion of the 3-month storage 

periods. This may indicate that this concentration borders on the threshold of the desired 

inhibitory action, because others have shown this formulation concentration to be sufficient. 

It would seem that to ensure the safety of RTE meat products, other interventions should be 

included, such as post-process surface treatments or other antimicrobial ingredients. 

Collectively these studies indicate that effectiveness of lactates in meat formulations can 
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depend on inoculum concentration, strain, inoculum source, product type (Shelef and Yang, 

1991), product formulation (Hu and Shelef, 1996), cure status, storage temperature, and the 

employment of other interventions. 

Use of Bacteriocins to Control L. monocytogenes in RTE Meat Products 

Bacteriocins are antimicrobial compounds that have a peptide or protein component 

essential for activity. Although most bacteriocins have a narrow spectrum of inhibition and 

only inhibit closely related species, some bacteriocins, such as nisin and pediocin, have a 

relatively broad spectrum and can inhibit some less closely related organisms (Lou and 

Yousef, 1999). Although their modes of action vary, bacteriocins usually destabilize the 

cytoplasmic membrane of sensitive cells, increase membrane permeability, and dissipate 

the proton motive force by forming water-filled transmembrane pores or channels (Jack et 

al., 1995). Bacteriocins of LAB are divided into 4 distinct classes: (I) Lantibiotics, 

lanthionine-containing peptides, such as nisin, (II) small (<10 kD), non-lanthionine-

containing, relatively heat-stable bacteriocins, such as pediocin PA-1, P02, or AcH, (III) 

large (>30 kD) heat-labile molecules, and (IV) bacteriocins with nonpeptide moieties 

(Klaenhammer, 1993). 

Drawbacks of bacteriocin use in biopreservation includes limited large-scale 

application in the food industry. Additionally, when bacteriocins are added to foods, they 

usually show only a modest antimicrobial effect, a common observation among other 

antimicrobials. Also, LAB bacteriocins are typically limited to activity against only gram-

positive bacteria, due to their exclusion by the outer membrane (OM) of gram-negatives 
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(Stevens et al, 1992). Therefore, a bacteriocin is usually applied to food systems in 

conjunction with other compounds from a hurdle approach. In the United States, nisin is 

the only bacteriocin currently permitted in foods in its purified form; allowed up to 250 

ppm in various types of pasteurized cheese spreads (CFR, 2005a). However, there are 

many published studies investigating the efficacy of bacteriocins in/on other foods. 

Because a large number of these compounds are active against L. monocytogenes, and the 

association of this pathogen with RTE meat products is well-recognized, discussion will be 

confined to investigations of bacteriocins to control L. monocytogenes on RTE meat 

products. Typical applications (as bacteriocin-containing fermentâtes, crude extracts, or 

purified forms) for RTE meat products and other foods include: (1) Direct addition of 

bacteriocin-producing bacteria, (2) food surface treatment, (3) formulation as antimicrobial 

ingredients, or (4) incorporation into primary food packaging materials (active packaging). 

Several criteria for selection of suitable biocontrol microorganisms for use in meat 

or meat products were proposed by McMullen and Stiles (1996). Biopreservation 

microorganisms should be psychrotrophic, produce bacteriocins early in the growth cycle, 

and exhibit little negative effect on product quality. In addition, bacteriocins produced by 

these bacteria should be bactericidal and stable in the food environment. The authors 

concluded that nisin-producing lactococci are poor biocontrol organisms, since they do not 

grow well at chill temperatures or in meat products. They also noted that pediocin-

producing pediococci are also poor meat biopreservatives, because antilisterial activity 

occurs only at abuse temperatures (Degnan et al, 1992). In this study pediocin production 

was not observed on wieners stored at refrigeration temperature, but at 25°C, production of 
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pediocin by the producer organism inhibited the pathogen for 8 days. Yousef et al. (1991) 

found similar results; however, L. monocytogenes counts decreased by 5.84 log CFU/ml 

after 3 days when wiener exudates were coinoculated with Pediococcus acidilactici H. In 

contrast Berry et al. (1991) found that P. acidilactici JD1-23 controlled the growth of L. 

monocytogenes for 15 days at 15°C and 60 days at 4°C on vacuum-packaged frankfurters. 

Also, a combination of 3 LAB, including P. acidilactici, inhibited the growth of L. 

monocytogenes for 28 days on frankfurters and ham stored at refrigeration temperature. 

Bactericidal activity was noted on frankfurters as well (Amezquita and Brashears, 2002). 

Other LAB have also been studied for their potential use as bioprotectives on refrigerated 

meats. Bredholt et al., (1999) isolated 5 uncharacterized, indigenous LAB from meat 

products and applied them in challenge studies (>104 CFU/g) against L. monocytogenes on 

cooked, sliced, vacuum- and gas-packaged ham. Results showed that growth of the 

pathogen could be inhibited for 30 days at 8°C. Very similar results were shown by 

Mataragas et al. (2003) on sliced cooked cured pork shoulder (4°C), using Leuconostoc 

mesenteroides LI24 and Lactobacillus curvatus L442 isolated from dry fermented 

sausages. When Enterococcus faecium A-48-32 (107 CFU/g) was coinoculated with L. 

monocytogenes (103/g) in cured sausages, pathogen counts were undetectable after 9 days 

of storage. Also Lactobacillus sakei CTC494 (Hugas et al., 1998) and Lb. sake 706 

(Schillinger et al., 1991) were found to have moderate inhibition of listerial growth on 

cooked pork and in sausages, respectively. 

Probably the most promising application for use of bacteriocins in RTE meat 

products is their inclusion into surface treatment solutions. For example, Nisaplin (0.5%), 
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the commercial form of nisin equivalent to 5000 IU/ml of nisin, was used as a surface 

treatment on vacuum-packaged bologna and ham stored at 10°C in combination with 

organic acids, to control the presence of L. monocytogenes (Geomaras et al., 2005). Initial 

reductions were 2.4 to 2.9 log CFU/cm2 when Nisaplin was used alone or followed organic 

acid treatments. Nisaplin alone had little to no effect on growth inhibition, however when 

combined with lactic acid (2.5%), pathogen counts were reduced to undetectable levels at 

the end of the storage (48 days). It should be noted that inoculation occurred before 

treatment in this study. On sausage, activity of 100-200 ppm nisin against L. 

monocytogenes increased when combined with the chelator tert-butylhydroquinone 

(TBHQ) or high-pressure processing (Chung et al., 2005). Results to these studies 

demonstrate the importance of combining bacteriocins with other hurdles for effective use. 

More studies involving bacteriocins in multi-hurdle approaches will also be discussed, with 

exception of surfactants, as they will be discussed separately in the next section. On beef 

frankfurters, Uhart et al. (2004) studied the effects of a 6000 AU-pediocin dip (5 min) on L. 

monocytogenes before inoculation during 3 weeks of storage at 4°C. Results indicated that 

pediocin alone displayed almost no initial lethality, but lowered counts by -0.5 log CFU/g 

after 3 weeks of storage. Combining pediocin with NaL and sodium diacetate improved 

reductions at 3 weeks by -2 log CFU/g. Similar studies were conducted by Chen et al. 

(2004a; 2004b; 2004c) using ALT A 2341, a food-grade fermentation product containing 

significant pediocin activity. In these studies, pediocin alone (3000 or 6000 AU/link) had 

little effect at 10 or 25°C, but after 7 weeks of storage at 4°C pediocin reduced L. 

monocytogenes counts by approximately 0.5 log CFU/g, which is in agreement with the 
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aforementioned study. However, the pathogen grew to high numbers, but below that of the 

control, by the end of storage (12 weeks), which indicates the importance of conducting 

storage studies for appropriate lengths of time. Combining pediocin with postpackaging 

thermal pasteurization (PPTP; Chen et al., 2004a) or postpackaging irradiation (Chen et al., 

2004b) drastically improved the control of L. monocytogenes, where some treatments 

lowered counts to undetectable numbers by the end of storage, depending on storage 

temperature, packaging type, and severity of heat or irradiation treatments. Pediocin AcH 

on sliced cooked sausages reduced populations of L. monocytogenes by >1 log CFU/g 

during 21 days of storage, however, the control group did not increase in numbers on the 

product (Mattila et al., 2003). Also, studies on a bacteriocin produced by Carnobacterium 

piscicola revealed potential use on vacuum-packaged beef muscle meat, where growth of L. 

monocytogenes was inhibited for 14 days at refrigeration temperature (Schôbitz et al., 

1999). 

Investigations of using bacteriocins as RTE meat formulation ingredients are 

limited, which may imply a lack of appropriateness for this as an efficient antimicrobial 

application. However, significant use was shown by Aymerich et al. (2000) who 

challenged a close relative of L. monocytogenes, L. innocua, with enterocins A and B by 

formulating it into ham, pork mince, and liver pate. Results showed that 4800 AU/g 

reduced populations by 7.98 log cycles in cooked ham and 9 log cycles in pate during 

refrigerated storage for 37 days. In pork mince, 1600 AU/g inhibited growth of the 

organism. These researchers also found that nisin had excellent inhibitory against L. 

monocytogenes on sliced cooked ham for 84 days, when combined with lactates and high 
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hydrostatic pressure (Aymerich et al, 2005). In contrast to ham, formulating enterocin 

CCM 4231 (12,800 AU/g) into dry salami had very little effect on L. monocytogenes, where 

after initial reductions of 1.67 log cycles, the pathogen grew rapidly to 107 CFU/g after 1 

week. The authors suggested there was limited bacteriocin diffusion into the meat 

(Laukovâ et al, 1999). Overall effectiveness of bacteriocins as part of meat formulations 

seems limited, possibly due to the higher pH of meat (Rayman et al., 1983; Abee et al, 

1995), inability to uniformly distribute the bacteriocin (Cleveland et al, 2001), and 

interference by meat components such as phospholipids, fat content (de Vuyst and 

Vandamme, 1994; Davies et al., 1999) or other components (Chung et al., 1989). These 

antagonistic intrinsic food factors are not limited to situations in which bacteriocins are 

applied as formulation ingredients, but also to bioprotective use and post-processing surface 

treatments. 

Incorporation of bacteriocins into packaging or edible films (active packaging) has 

also been an active area of research, with promising applications for nisin in particular. 

Antimicrobial films prevent microbial growth on food surface by direct contact of the 

package with the surface of foods, such as meats. For this reason, and for it to work, the 

antimicrobial packaging or edible film must contact the surface of the food so that 

bacteriocins can diffuse to the surface. Gradual release of bacteriocins from a film to the 

food may have an advantage over dipping or spraying foods with bacteriocins. In the latter 

processes, antimicrobial activity may be lost or reduced due to inactivation of the 

bacteriocins by food components or dilution below active concentration due to migration in 

the foods (Appendini and Hotchkiss, 2002; Chen and Hoover, 2003). For example, Fang et 
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al. (1996) demonstrated that immobilized nisin inhibited the growth of L. monocytogenes 

longer than free nisin on cooked pork. Grower et al. (2004) found that film coatings 

formulated with nisin, along with various acids did not affect water vapor transmission rates 

of low density polyethylene (LDPE) film, while tensile strength increased. Activation of 

polyethylene films by soaking, spraying, and coating with antilisterial bacteriocin 32Y, for 

use against L. monocytogenes on meat products differed in terms of activity, where coating 

was the best (Mauriello et al., 2004). Ltingu and Johnson (2005a) determined the effects 

using nisin in combination with NaL and sodium diacetate in zein coatings for model turkey 

pieces. Zein coatings are edible films made of corn protein. It was reported that nisin alone 

reduced populations by 6.6 log CFU/g after 28 days of refrigerated storage, and diacetate 

alone was similar. Combination of the two actually produced slightly lower reductions, and 

although the authors concluded that no synergies were found among the treatments, 

reduction of L. monocytogenes to undetectable numbers could be achieved depending on 

the coating material. In another study, these researchers investigated the use of 

incorporating nisin with and without potassium sorbate in zein coatings for use on full fat 

turkey frankfurters. Results showed that nisin alone significantly reduced L. 

monocytogenes counts after 28 days of storage at 4°C. Using a larger pathogen inoculum, 

counts were 6.1 logs lower than the controls, but undetectable when lower inoculum 

concentrations were used. Inclusion of sorbate did not improve nisin effectiveness (Lungu 

and Johnson, 2005b). Similarly, Dawson et al. (2002) evaluated the use of 2.5% nisin and 

8% lauric acid-impregnated soy-based films to control L. monocytogenes growth on turkey 

bologna at 4°C. After 21 days of storage nisin, lauric acid, or a combination of the two 



www.manaraa.com

39 

reduced populations by 1 log after 21 days of storage, indicating there was no benefit using 

this hurdle approach, however synergistic behavior was noted in a broth system. Using 

nisin-coated cellulose-based films, Franklin et al. (2004) investigated effectiveness in 

controlling listerial growth on frankfurters during refrigerated storage for 60 days. At the 

end of storage nisin at 10,000, 7500,2500, and 156.3 International Units/ml (250-3.9 

pg/ml) reduced pathogen counts by >2, >2,1, and 0 log-cycles respectively. In contrast, 

Luchansky and Call (2004) incorporated nisin (50,000 IU/in2) into cellulose casings for 

frankfurter processing. After 90 days of refrigerated storage, L. monocytogenes counts 

were reduced by 1.15 log CFU/package using nisin-coated casings on frankfurters 

formulated with lactate and diacetate. However lactate and diacetate without nisin reduced 

populations by 0.95 log CFU/package at 90 days, and nisin alone reduced populations by 

only 0.88 log CFU/package, but increased to high numbers by 60 days. This indicated that 

when incorporating nisin into frankfurter casings, antimicrobial formulations are needed. 

Excellent pediocin activity has also been shown by incorporating the bacteriocin into food 

packaging films for use against L. monocytogenes on meat and poultry. Using a 7.75 

(xg/cm2 concentration, growth of the pathogen could be inhibited for 12 weeks at 

refrigerated storage (Ming et al., 1997). 

In summary, results to these studies demonstrate very promising use of bacteriocins 

as a means of controlling L. monocytogenes on RTE meat products. In addition, the use of 

incorporating other hurdles in combination with bacteriocins seems necessary for reliable 

activity against the pathogen. While it is well established that the use of divalent metal 

cation chelators (i.e. EOT A) improve the activity of bacteriocins against gram-negative 
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(Stevens et al., 1991; Stevens et al., 1992) and gram-positive bacteria (Parente et al., 1998; 

Mok et al., 1999), less is known regarding the potential role of surfactants in potentiating 

the efficacy of antimicrobial compounds. 

Use of Surfactants as Antimicrobial Adjuvants to Control L. monocytogenes 

Surfactants (surface-active agents) function by decreasing the surface tension 

between polar and nonpolar groups thereby allowing them to come in closer approximation 

to one another. It is thought that surfactants may heighten bacterial sensitivity to certain 

antimicrobials by destabilizing the cell membrane, however, the mechanism is not fully 

understood (Li et al., 2002). In addition, if surfactants are added to antimicrobial dip or 

spray formulations for foods, there may also be improved "wettability" of the food surface 

allowing more uniform distribution of the antimicrobial substance (Shefet et al., 1995). 

Although there are a vast number of surfactants that fall within different classes (i.e. anionic 

and nonionic), there are a small number that have been intensely studied for the control of 

foodborne pathogens in various foods (Salager, 2002). Discussion on surfactants will be 

confined to nonionic surfactants Tween 20 and 80 (polyoxyethylene sorbitan monoesters), 

and the acid-anionic surfactant sodium lauryl sulfate (SLS), because of their approval for 

food use, and selection for our studies. Tween 20 and 80 are used in a variety of foods 

ranging from frozen desserts to vitamins (CFR, 2005b; CFR, 2005c), while SLS is used in 

products such as edible fats and oils, egg whites, and fumarate-acidified beverages (CFR, 

2005d). 
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It is well established that Tween 20 and 80 have negligible effects on the survival of 

L. monocytogenes and other organisms (Dockstader and Groomes, 1970). Despite the 

absence of inhibitory action of Tween 20 and 80 against L. monocytogenes, researchers 

have reported they do have an effect on bacterial membrane lipid composition. Li et al. 

(2002) demonstrated a Tween 20-induced increase in the C15/C17 and anteiso/iso ratios of 

the membrane fatty acids of L. monocytogenes, indicating a lowering of membrane phase 

transition temperature. Lactococci grown in the presence of Tween 80 were also shown to 

have decrease in C19 fatty acids accompanied by an increase of fatty with shorter chain 

lengths, indicating increased membrane fluidity (Kimoto et al., 2002). SLS has 

antimicrobial activity against L. monocytogenes (unpublished data) and other bacteria 

(Raiden et al., 2003), with heightened effectiveness at acidic pH (Dychdala, 1983). The 

mechanism of action is not well understood; however, there is evidence for: (i) general 

denaturation of proteins, (ii) inactivation of essential enzymes, and (iii) disruption of cell 

membranes, resulting in alterations in permeability (Cords and Dychdala, 1993). The 

bacterial OM is known to be necessary for SLS resistance, but not entirely impervious to it 

(Rajagopal et al., 2003), thus gram-negative bacteria are much more resistant to the direct 

effects of SLS, compared to gram-positive bacteria. 

There are several reports in the literature evaluating the use of surfactants in 

combination with other antimicrobials; however, there is a scarcity of published 

information involving the use of surfactants against L. monocytogenes in RTE meat 

products. In regard to the use of Tween 20 and 80, variable results are in the scientific 

literature reporting their use in combination with antimicrobials. 
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Studies conducted in food systems, that demonstrate improved effectiveness of 

bacteriocin/Tween treatments, have attributed it to improved food surface wettability, 

removal of bacterial cells, and a reduction of non-specific binding that would otherwise 

result in less available bacteriocin amounts (Shefet et al., 1995; Bhatti et al., 2004). For 

example, in vitro studies have indicated that Tween 20 (Mazzotta et al., 1996) and Tween 

80 (Sip and Grajek, 2001) enhance nisin and non-lantibiotic divercin activity, respectively. 

In broth media, Li et al. (2002) attributed an increase in nisin sensitivity of L. 

monocytogenes cells to Tween 20-induced improved nisin-membrane binding efficiency 

where no changes in membrane fluidity were observed. Nisin activity (10 or 50 IU/ml) 

against L. monocytogenes was improved by the use of Tween 80 in milk (Jung et al., 1991) 

but was antagonized in tomato juice against Bacillus coagulans (Henning et al., 1986). 

Because fat reduces nisin activity, as previously mentioned, the authors of the former study 

suggested that the surfactant displaced nisin from fat globules thereby making it available 

for activity. This was supported by previous studies demonstrating the ability of Tween 80 

to displace proteins from the milk fat globule (Mulder and Walstra, 1974). These two 

studies indicate that depending on food type, surfactants can either improve or reduce 

activity of bacteriocins. In regards to pediocin, Degnan et al. (1993) found that liposome 

encapsulation of it in Tween 80 increased activity against L. monocytogenes in dairy 

products and on beef. Differences in the type of antimicrobial used can also be affected by 

use of Tween 80 and other surfactants. For example, surfactants form micelles in which 

solute molecules may be solubilized within, thereby preventing the agent from interacting 

with bacterial cells. This was suggested when Tween 20 and 80 were shown in vitro to 
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compromise the antimicrobial activity of bile, essential oils, phenols, surfactants, organo-tin 

compounds, and anilides (Kimoto et al., 2002; Hammer et al., 1999; Inouye et al., 2001; 

Juven et al., 1994; Ishizeki et al., 1973) against organisms other than L. monocytogenes. In 

contrast, encapsulation of carvacrol and eugenol in other nonionic surfactants has been 

shown to improve activity against L. monocytogenes (Gaysinsky, 2005a; Gaysinsky, 

2005b). 

Utilization of SLS has mainly been applied to poultry carcass washes, however 

results in our laboratory have shown synergistic activity with lactic acid on frankfurters 

(unpublished data). Tamblyn and Conner (1997) used an aqueous solution of 125 ppm SLS 

and 0.5% lactic acid against Salmonella Typhimurium on broiler chicken skin surfaces, 

demonstrating reductions between 0.52 and 1.54 log CFU/skin depending on temperature 

and bacterial attachment. Hill and Ivey (1988) patented a method for controlling 

Salmonella spp. on meat carcasses during processing that involves immersing the carcass in 

an aqueous solution of surfactants including SLS at pH below 4.0 at 45-60°C. They also 

suggested that this treatment can be used at lower temperatures for an appropriate amount 

of time. A similar acid-synergist approach was tested against various bacterial strains in a 

study of Restaino et al. (1994) where the antimicrobial properties of a buffered organic acid 

anionic surfactant (BOAAS), containing SLS, citric acid, and EDTA, was compared with 

six other conventional sanitizers. This antimicrobial treatment displayed superior activity 

compared to other sanitizers against foodbome pathogens, including L. monocytogenes. The 

initial numbers of the pathogens were all reduced by >5 log-cycles on the surface of 

artificially contaminated Formica countertop after 30-sec exposure to a 0.6% solution of 
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BOAAS. Results to the aforementioned investigations indicate that depending on the 

components used, surfactants can heighten the efficacy of antimicrobial compounds. 

METHANOBACTIN 

Methanotrophic Bacteria 

Methanotrophic bacteria, or methanotrophs, are a subset of a physiological distinct 

group of bacteria known as methylotrophs. Methanotrophs are gram-negative bacteria that 

are unique in their ability to utilize methane as a sole carbon and energy source. 

Methylotrophic bacteria are those aerobic bacteria that utilize one-carbon compounds more 

reduced than formic acid as sources of carbon and energy and assimilate formaldehyde as a 

major source of cellular carbon (Hanson and Hanson, 1996; Hou, 1984). Classification of 

methanotrophs into five genera was proposed by Wittenbury et al. (1981; 1984; 1970), with 

a sixth genus added more recently (Bowman et al., 1993; Bowman et al, 1995). 

Separations are based on differences in morphology, resting stage type, fine structures of 

intracytoplasmic membranes, and physiological characteristics, such as formaldehyde 

assimilation pathway and complete TCA cycle status (Hanson and Hanson, 1996). 

Methanotrophs are further divided into groups I, II, and X, where type X assimilates 

formaldehyde primarily via the ribulose monophosphate (RuMP) pathway like type I, but is 

distinguishable by having low levels of enzymes of the serine pathway. Type X can also 

grow at higher temperatures (i.e. 45°C) than the other types (Wittenbury et al., 1981; 

Wittenbury et al, 1984; Hanson and Hanson, 1996). Cell morphology of methanotrophs 

ranges from cocci and rods to ellipsoid and pear-shaped. Intracytoplasmic membrane 
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arrangements can be bundles of vesicular disks or paired membranes aligned to the 

periphery of cells. In addition, many form resting stages of which there are three types: 

exospheres, and two types of cyst (lipid and azotobacter-type), which are desiccation-

and/or heat-resistant (Hou, 1984). 

Methanotrophic bacteria can be found in mud, swamps, water, and vegetation 

(Hanson and Hanson, 1996) and are responsible for the oxidation of biologically-generated 

methane (Soehngen, 1906); therefore they are of great environmental importance to reduce 

the amount of this greenhouse gas released to the Earth's atmosphere. In addition to these 

ubiquitous organisms playing an integral part of global carbon cycling, their potential use in 

single-cell protein (SCP) production has been evaluated (Tusé, 1989). SCP can be 

produced directly from the methane or methanol fraction of natural gas by cultivating 

methanotrophic bacteria. Methanol seems to be a preferable substrate due to safety 

considerations, mass transfer problems, and lesser yield associated with growth on methane 

(Powell and Rodgers, 1984). Some advantages of using methanotrophic bacteria versus 

methanol-utilizing yeasts in SCP production include: (1) The yield of yeast can be as much 

as 25% lower than the yield of bacteria per gram of methanol, (2) the yield of yeast is lower 

than yield of bacteria per mole of oxygen, (3) yeast methanol dehydrogenase (DH) has a 

lower affinity for oxygen and methanol, thus it can become limiting, and (4) lower overall 

efficiency of the yeast reaction leads to a requirement for extra cooling in the fermentor 

(Powell and Rodgers, 1984). 

The enzymes used in the first step of methane metabolism are known as methane 

monooxygenases (MMOs). These enzymes catalyze the oxidation of methane to methanol. 
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It is well established that there are two types of MMOs: membrane-associated or particulate 

MMO (pMMO) and the cytosolic or soluble MMO (sMMO; Lontoh and Semrau, 1998; 

Lieberman and Rosenzweig, 2005a; Ward et al., 2004; Lieberman and Rosenzweig, 2005b; 

Murrell et al., 2000; Hanson and Hanson, 1996). While virtually all methanotrophs employ 

pMMO, not all methanotrophs possess the genes for sMMO. This competitive advantage is 

known to be carried in a number of type II and X methanotrophs (Hanson and Hanson, 

1996), as well as a couple of type I methanotrophs (Fuse et al., 1998; Shigematsu et al., 

1999). Particulate MMO is found in the extensive intracytoplasmic membranes and has a 

more narrow substrate specificity than sMMO. The latter can oxidize alkanes, alkenes, and 

aromatics of up to eight carbons, while the former cannot oxidize aromatics (Murrell et al., 

2000). Expression of the two enzymes is highly dependent on copper availability. Under 

conditions in which the copper-to-biomass ratio is low (under "low-copper" growth 

conditions), sMMO is expressed. In addition, sMMO activity is more pronounced in high 

cell density fermentations and may be repressed by the presence of copper (Murrell et al., 

2000; Jahng and Wood, 1996). This enzyme is well characterized and its active site has 

been elucidated, in contrast to pMMO. The more ubiquitous enzyme, pMMO, is expressed 

under "high-copper" growth conditions. While the crystal structure of Methylococcus 

capsulatus (Bath) pMMO was recently determined to a resolution of 2.8 Â, its active site is 

still under considerable debate despite 20 years of research (Lieberman and Rosenzweig, 

2005a). In non-methanotrophic organisms, copper metabolism is geared towards 

accumulation, exclusion, extrusion, and/or detoxification. These mechanisms are well 

established for E. coli, Pseudomonas syringae, and Enterococcus hirae. Extensive reviews 
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can be found on this subject (Cooksey, 1993; Reusing and Grass, 2003; Lu et al., 2003; 

Harrison et al., 2000; Nies, 1999; Vulpe and Packman, 1995; Puig et al., 2002); therefore, 

no further details will be discussed in this literature review. In contrast to most other 

microorganisms, copper plays a very important role in methanotroph physiology; however, 

it is believed they are not typically starved for copper in the environment (Berson and 

Lidstrom, 1996; Fitch et al., 1993). Despite this, it has been suggested by numerous 

researchers that these organisms may possess a specific copper-trafficking system due to 

their high copper dependencies. In addition, difficulty in determining the pMMO active 

site has likely stemmed in part from the presence of the recently characterized and currently 

recognized compound, methanobactin. 

Chronological Characterization of Methanobactin 

To better understand the physiological role and ecological significance of copper 

regulation in methanotrophic M. trichosporium OB3b, Fitch et al. (1993) used five 

previously isolated mutants (Phelps, et al., 1992) that exhibited constitutive sMMO activity 

in the presence of copper; an activity that would normally be repressed in wild-types. It 

was suggested that the lack of effects on growth rate and sMMO expression due to copper 

in these mutants was not a result of increased stability of sMMO to copper deactivation. 

They proposed that the mutant phenotype arose from defects in copper uptake and 

metabolism rather than from changes in sMMO expression or enzyme stability. 

Furthermore, the researchers noted that extracellular copper solubilization occurred in the 

media of mutant cultures and suggested that the organism was excreting a Cu(II)-
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complexing agent(s), perhaps analogous to siderophores in Fe(III) metabolism (Bagg and 

Neilands, 1987). They further suggested that the increase in soluble copper in the mutant 

cultures may be due to either the overproduction of such agents or to a defect that prevents 

the cells from internalizing the complexes with copper. This is the first report 

demonstrating phenomenon indicative of methanobactin existence. 

Zahn and DiSpirito (1996) investigated procedures to solubilize and isolate pMMO 

from another methanotroph, M. capsulatus (Bath), and subsequently analyzed the active 

preparations. Their findings included the identification of three pMMO polypeptides that 

were expressed during the switchover from low- to high-copper media. The study provided 

evidence that both iron and copper are part of the active site in pMMO and most of the 

copper was found to be loosely bound to pMMO by association with the first described, 

copper-binding cofactor (CBC). Those researchers first identified the presence of an 

extracellular copper-complexing agent that co-purified with pMMO and, at that time, was 

thought to be a dimer composed of two 618-Da peptides (-1200 Mr) that bound 2-3 copper 

atoms. In copper-free medium, the CBC was predominately observed in the extracellular 

fraction, and when concentrations of CBC decreased in the spent media, this difference was 

attributed to association with membrane fractions. It was concluded that CBC may provide 

a secondary function, such as stabilize pMMO, maintain a particular redox state, or 

sequester copper. These hypotheses fueled the need for future research. 

Further work (DiSpirito et ah, 1998) on these so-called copper-binding 

compounds/co Actors (CBCs) from M. trichosporium OB3b provided preliminary structural 

evidence and spectral properties. Two were identified (CBC-Li and CBC-L?) and were 
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found to be identical to the CBC from M. capsulatus (Bath) previously isolated by this 

group. Results showed that the concentration of CBC in the spent media was highest in 

cells expressing the pMMO and stressed for copper (5 gM G1SO4), which is at the 

switchover point between the expression and subsequent activity of the two MMOs. These 

growth conditions led to a light yellow colored-media due to high concentrations of CBC, 

where it was even more pronounced in mutant cultures. In addition, yellow halos could be 

observed around sMMOc mutant colonies as a result of extracellular copper-bound CBC. 

Complete amino acid sequencing could not be achieved due to the presence of non-peptide 

components, and fractions were generated as breakdown components of CBC-Li. In 

addition, copper titration experiments revealed that the larger CBC bound one copper ion 

and that their previous studies overestimated the binding stoichiometry. In agreement with 

the aforementioned studies, sMMOc mutants were deficient in copper uptake. While 

nonprecipitable copper increased in the growth media, little to no expression of the three 

pMMO polypeptides was observed, and when cultured in high-copper media, mutant CBC 

was found to be copper-bound. It was concluded that the mutants may be deficient in 

copper uptake by the inability to bind copper-containing CBCs from the extracellular 

media, possibly through pMMO. In addition, because pMMO activity was lost when CBCs 

were removed from the pMMO polypeptides, it was suggested that CBCs may function as a 

cofactor for its activity or stability, scavenge oxygen radicals, as well as fulfilling possible 

secondary roles previously mentioned. Earlier that same year, Téllez et al. (1998) isolated 

what they referred to as a copper-binding ligand (CBL) from M. trichosporium OB3b, 

thought to be a same compound described by DiSpirito et al. (1998). This study described 
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a ~500-MW compound that had a ligand preferring copper over nickel despite 20-fold 

concentrations of the latter. Wild-type cultures produced it maximally when growth 

conditions were copper-limited while it was found in high concentrations in the spent of 

mutants regardless of copper concentration. In addition, when copper was added to the 

growth media of wild-types, the CBL was found to be reintemalized or utilized by the 

organism suggesting it being part of a copper-acquisition system, whereas the mutants 

appeared incapable of this activity. 

The development of improved purification procedures with higher activity for 

pMMO of M. capsulatus (Bath) by Choi et al. (2003) led to further description of the 

copper role in morphological changes, copper acquisition, fatty acid concentration, and 

pMMO and sMMO expression in methanotrophs. Continued study on CBC revealed that 

the compound displayed strong superoxide dismutase-like activity similar to or greater than 

that of the actual enzyme or copper complexes used for this activity. It was found that 

copper-free CBC did not scavenge Of" while copper-bound CBC did. 

Ph. D. research work on M. trichosporium OB3b by Kim (2003) led to the isolation, 

structural elucidation, and characterization of this copper-complexing agent (Kim et al., 

2004; Kim et al., 2005). Studies revealed that previously identified CBCs and CBL were 

actually breakdown products of the primary molecule, with the exception of CBC-Li—now 

called methanobactin for its similarities with pyoverdin class siderophores (pseudobactin 

and azotobactin). Previous attempts to isolate the compound used low-pH conditions 

leading to breakdown, which has been reported to also occur during purification of other 

compounds as well (Démangé et al., 1988). Shown below (Figure 1) is the schematic 
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drawing of copper-bound methanobactin (Mb-Cu) and UV-Vis absorption spectra of Mb-

Cu with Cu:Mb molar ratios ranging from 0.01 to 1.0 Cu(II) atom per Mb. 

Adapted from Kim et al. (2004) 

Figure 1. Schematic drawing of methanobactin (A) and UV-Vis absorption spectra of 
methanobactin as isolated and upon successive copper (as CuCl or CUSO4) additions from 
0.01 to 1.0 molar equivalents (B). 

These two studies (Kim et al., 2004; Kim et al., 2005) revealed that Mb-Cu is a 

small (1217 Da), fluorescent chromopeptide with a coordination environment containing 

one Cu+ ion in a dual nitrogen- and sulfur-donating reducing ligand system derived from 

the thionyl imidazolate moieties. The primary sequence of Mb-Cu is JV-2-isopropylester-(4-

thionyl-5-hydroxy-imidazole)-Gly1-Ser2-Cys3-Tyr4-pyrrolidine-(4-hydroxy-5-thionyl-

imidazole)-Ser5-Cys6-Met7, with an empirical formula of C45N12O14H62CU. The authors 

described the overall structure as a compact pyramid-like shape with the metal 

complexation site located at the base of the pyramid and not buried. The isopropylester 

Cu (II) 
addition 

Pyrrolidine 

HaC—c 

\> 7» 

A 
230 280 330 380 430 480 530 

Wavelength(nm) 

Adapted from Choi et al. (2006) 
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group folds underneath creating a tail-like projection and cleft, and obscures the metal site 

somewhat. The pyrrolidine allows a bend in the overall chain similar to that of proline. It 

was also noted that the thioamide bonds associated with the imidazole groups resemble 

those found in the antibiotics promoinducin and thiostreptone, which are inhibitors of 

protein synthesis (Chiu et al., 1999). Specifically, EDTA-dialyzed methanobactin revealed 

UV-Vis spectrum characteristics such as: absorption maximum at 340 nm, a shoulder at 394 

nm, featureless absorption in the 240-280 nm range, and no features beyond 400 nm. 

Exposure to UV light for extended periods of time resulted in complete loss of 394 nm 

absorbance, suggesting methanobactin is photosensitive in the apo-form (i.e. not bound to 

copper). Successive additions of CuClz resulted in the loss of three characteristic peaks at 

394, 340, and 281 nm and the appearance of new features at 335, 290, and 255 nm, where 

loss was most evident at 388 nm. The 255-nm peak indicates the presence of di-sulfide 

bond between the two cysteine residues upon copper addition. Saturation with copper also 

revealed peaks at 333 and 356 nm, where at pH <5.0 the latter peak was lost relative to 

former indicating reformation of apo-methanobactin. Fluorescence emission spectra 

revealed that /Lex= 282 and 342 nm corresponded to tyrosine and chromophore component, 

respectively. In regards to its effect on growth parameters of M. trichosporium OB3b, 

downshifting copper availability during culturing shortened lags and increased growth rates 

as the Cu:Mb supply ratio approached 1:1, further supporting that this is the optimum 

binding stoichiometry. These authors proposed that because methanobactin fulfills the 

analogous role of iron-binding siderophores, it should be the first to be placed into a new 

class of compounds called chalkophores (copper in Greek). 
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Up until this point, studies on methanobactin suggest that it fulfills roles in copper-

trafficking: (1) Accumulates to high amounts in the growth media, but is rapidly 

internalized when copper is provided, (2) stimulates growth in copper-grown cultures with 

an optimal 1:1 copper:Mb binding stoichiometry, (3) copper uptake-deficient mutants 

accumulate it in growth media in the presence of copper, and (4) removal of it from pMMO 

results in irreversible loss of pMMO activity in cell-free systems. Furthermore, the 

compound, when bound to copper, may be internalized to the cell, possibly in association 

with pMMO (6-8 Mb-Cu per pMMO), and also may fulfill a secondary roles as a oxygen 

radical scavenger, pMMO stabilizer, and/or maintain the appropriate redox state of the 

enzyme. In 2004, the genome sequence of M capsulatus (Bath) was solved (Ward et al., 

2004). This project revealed the presence of a non-ribosomal peptide synthetase (NRPS), 

suggested to be involved in the production of methanobactin. The starting module 

contained an adenylation domain, a thiolation domain, and unusual acetyltransferase 

domain. They suggested that the starting module may interact with a second module that 

contains a condensation domain and terminal thioesterase needed for peptide release, which 

would lead to the release of methanobactin. 

More recent studies (Hakemian et al., 2005; Choi et al., 2005; Choi et al., 2006; 

Choi et al., submitted for publication) have helped further characterize the physiological 

role(s) of methanobactin. For example, studies have indicated that apo-methanobactin from 

M. trichosporium OB3b can load Cu(I) or Cu(II), where only Cu(I) is found in Mb-Cu. It 

was suggested that Cu+2 reduction to Cu+1 may be coupled to disulfide bond formation in 

methanobactin (Hakemian et al., 2005). Choi et al. (2005) established improvements in the 
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purification of methanobactin from either M. trichosporium OB3b or M. capsulatus (Bath). 

Studies revealed that Mb is a redox-active compound that could stimulate methane-

oxidation activity of both whole-cell and cell-free fractions from the latter organism 

expressing pMMO, where apo-methanobactin and copper-to-Mb ratios <0.5 Cu(II) per Mb 

did not. Electron paramagnetic resonance (EPR) spectra differed depending on copper-to-

Mb ratios, where <0.4, Cu(II) addition to Mb showed an initial coordination by both sulfur 

and nitrogen. This was followed by reduction to Cu(I) in <2 minutes, but at ratios between 

0.4 and 0.9 (Cu(II):Mb) there was more nitrogen coordination. Preliminary experiments 

revealed that Mb may bind copper as a homodimer (i.e. Mb-Cu-Mb, followed by the 

binding of a second Cu(II), resulting in a final molar ratio of 1:1). When Mb-Cu was a 

homodimer, (i.e. copper.Mb ratios <0.6), pMMO activity was inhibited, but at 0.6-0.8 

molar ratios, Mb-Cu stimulated pMMO. In addition, this study was the first to report solid 

evidence of Mb-Cu-pMMO interaction (possibly between Mb-Cu and the type II Cu(II) 

centre of pMMO) based on increased electron flow to pMMO, increased free radical 

formation following O2 addition, and decreased free radical formation when O2 and CH4 

were added; all due to Mb-Cu activity. 

Further studies by this group (Choi et al., 2006; Choi et al., submitted for 

publication) have revealed that unlike siderophores, methanobactin can bind a variety of 

transition metals but to a lesser extent than Cu(I) or Cu(II), including: Au(III), Co(II), 

Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), U(VI), and Zn(II), but not Ca(II), Cr(VI) and Mg(II). 

Most metals were found to bind methanobactin differently than that of copper, where the 

proposed copper-methanobactin binding model is as follows: methanobactin binds Cu(II) 
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initially as a dimer via the 4-thiocarbonyl-5-hydroxy imidazolate (THI) moieties, Cu(II) is 

reduced to Cu(I), change in coordination to involve the two 4-hydroxy-5-thiocarbonyl 

imidazolate (HTI) groups, addition of a second Cu(II) to the dimer formation changing 

coordination to a dual N and S system with subsequent release of two Mb-Cu monomers. 

These authors also suggested that methanobactin may be a so-called "moonlighting protein" 

due to the lack of success in assigning a singular role for this molecule. As mentioned, Mb 

has been shown to act as an oxygen radical scavenger and increase the rate of electron flow 

to pMMO, participate in a specialized copper-trafficking system by sequestering copper for 

subsequent uptake, and possibly serve as a copper chaperone or regulatory protein for 

pMMO. Moonlighting proteins are defined as proteins that can carry out more than one 

unrelated function (Jeffery, 1999). Roles can differ depending on cell location, oligomeric 

state, ligand or substrate concentration, change in physical environment, and/or complex 

formation with other proteins. With the unique structure and the possibility of multiple 

physiological roles of this compound, it is tempting to speculate that it may also possess 

some antimicrobial properties as well. Siderophores are known to possess antimicrobial 

properties, where they typically involve reducing iron availability to target organisms. 

Some of the literature pertaining to this is discussed in the following section. 

Although methanobactin was first isolated ten years ago, its characterization has 

come about within the last few years. Work will continue to further characterize its 

physiological roles and potential applications. In addition, methanobactin is found in M 

trichosporium OB3b, M. capsulatus (Bath), and more recently, Methylomicrobium album 

BG8 (Choi et al., 2005). This suggests that methanobactin may be a commonality among 
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methanotrophic bacteria, and the possibility exists that other organisms might produce 

similar compounds. 

Antimicrobial Activity of Siderophores 

There are a limited number of studies specifically investigating the antimicrobial 

properties of the iron-chelating agents, siderophores, in purified and known quantities. 

Much of the related research deals with the use of natural and synthesized siderophore-

antibiotic conjugates for improved delivery in medical applications (Miller et al., 1991; 

Braun, 1999; Braun and Braun, 2002), rather than use for controlling microorganisms in 

foods. Furthermore, in these applications, little antimicrobial activity is associated with the 

siderophore component when used as a carrier. Similarly, Thomas et al, (2004) discovered 

the first of a new class of bacterial-derived antimicrobials, called siderophore-peptides. It 

was found that producer strains (K. pneumoniae or recombinant E. coli) possessed the 

machinery to post-translationally modify the bacteriocin, Microcin E492, into a catechol-

type siderophore-mimicking compound. Activity against sensitive bacteria was attributed 

to uptake through any three catechol-type siderophore receptors located on the OM. 

In vitro investigations of the antimicrobial activity of siderophores have led to 

varying results. Hartzen et al. (1989) found that the siderophore deferoxamine, alone at 

200 ng/ml, had no effect on S. aureus, unless it was used in combination with ascorbic acid. 

They also noted that inhibitory concentrations of these combinations only had an effect for 

6 h, where bacterial growth could overcome the compounds at 24 h, unless additional test 

compounds were added during the assay. The use of the pyoverdin-producing (a 
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siderophore) bacterium, Pseudomonas jluorescens, has been shown to be suppressive 

towards the disease-causing wheat fungus, Gaeumannomyces graminis var. tritici (Hamdan 

et al., 1991), however, the importance of siderophore production was found to be negligible 

for the inhibition of the pathogen. In contrast, Cheng et al. (1995) isolated 3 strains of this 

siderophores-producing organism from chicken and ground pork. They found that the 

siderophores inhibited the growth of L. monocytogenes and several gram-negative 

foodborne pathogenic bacteria by way of restricting iron availability. In regards to L. 

monocytogenes, Coulanges et al. (1998) demonstrated that the iron-chelating agents, 

tropolone and 8-hydroxyquinoline, could also inhibit the growth of L. monocytogenes but 

could be antagonized if other siderophores were included. Buyer and Leong (1986) 

demonstrated antagonism between various Pseudomonas spp. on solid growth media, due 

to the production of siderophores, however, the actual amounts involved were not 

mentioned. Similar findings were reported by Tapia-Hernândez et al. (1990) where 

siderophores produced by Azospirillum brasilense were attributed to possess some 

antibacterial activity against strains of E. coli and Pseudomonas spp. Manwar et al. (2004) 

used paper disks soaked in cell-free filtrate, containing 0.24 mg/ml siderophore, produced 

by Pseudomonas aeruginosa. They found satisfactory zones of inhibition on plates 

containing various plant-pathogenic fungi. Studies such as these have found a minimal 

antimicrobial effect for siderophores alone, and observed activity attributed to the 

siderophores binding iron, rendering it unavailable for susceptible organisms, thereby 

causing iron starvation. 
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Peptide antibiotics have been suggested to normally act as carriers of ions through 

membranes in the producer organisms, which agrees with the strong metal binding 

properties of peptide antibiotics, and their ability to modify membrane permeability 

(Haavik and Froyshov, 1975; Weinberg, 1957; Bodanszky and Periman, 1969; Katz and 

Demain, 1977). Ornibactin, yersiniabactin, mycobactin, and pyochelin are both 

siderophores and virulence factors for the producer-organisms Burkholderia cepacia, 

Yersinia pestis, Mycobacterium tuberculosis, and Pseudomonas spp., respectively (Moffitt 

and Neilan, 2000). Another compound found in pseudomonads is pyocyanin of P. 

aeruginosa. Interestingly, this compound functions as an iron-chelator, electron transfer 

agent, and virulence factor in this organism. It was suggested that the redox activity 

associated with it may be responsible for overlapping activities (Hernandez and Newman, 

2001). Although methanobactin is unique and the first in its class, similarities of 

methanobactin with the aforementioned compounds may reveal that antimicrobial activity 

may be another role of such a dynamic compound. 
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CHAPTER 3. ANTIMICROBIAL EFFICACY OF METHANOBACTIN 
AGAINST LISTERIA MONOCYTOGENES SCOTT A 

IN LABORATORY MEDIUM 

A paper to be submitted to Applied and Environmental Microbiology 

Clinton L. Johnson1, Aubrey F. Mendonca1*, Alan A. DiSpirito2, 
James S. Dickson3, and Anthony L. Pometto III1 

ABSTRACT 

Methanobactin is a novel extracellular fluorescent chromopeptide produced by 

Methylosinus trichosporium OB3b, a methane-oxidizing bacterium. This easily culturable 

organism is important in global carbon cycling and for single-cell protein production. This 

study investigated the antimicrobial efficacy of copper-bound methanobactin (Mb-Cu) 

against Listeria monocytogenes Scott A in brain heart infusion (BHI) broth and the effect of 

pH (5.5 to 7.3) on its activity. Minimum inhibitory concentrations (MICs) were determined 

at 24 h for stationary-phase L. monocytogenes cultures in BHI broth (32°C) via use of a 

broth microdilution method. Growth was monitored spectrophotometrically (595 nm) in 6-

h increments and viability was determined after 24-h exposure via surface-plating samples 
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onto BHI agar and enumerating colonies after 72 h at 32°C. There was a non-linear 

relationship between the MIC of Mb-Cu and pH, with L. monocytogenes being most 

sensitive to Mb-Cu at pH 6.0. The MICs of Mb-Cu were 6.58, 7.40,4.11, and 7.40 mM at 

pH values 7.3, 6.5, 6.0, and 5.5, respectively. MICs of Mb-Cu exhibited a bactericidal 

action and resulted in 3.34-, 3.96-, 4.87-, and 4.87-log reductions in populations of L. 

monocytogenes at pH 7.3, 6.5, 6.0, and 5.5, respectively. Overall, reductions in numbers of 

the pathogen increased with increasing concentration of the peptide. At pH 6.0, Mb-Cu 

concentrations greater than the MIC, consistently resulted in undetectable levels (>5.00-log 

reductions) of L. monocytogenes. Based on the results of this study, methanobactin, a 

natural antimicrobial peptide, is bactericidal to L. monocytogenes and has good potential for 

use in food applications to destroy this pathogen. 

INTRODUCTION 

Listeria monocytogenes is a deadly foodborne pathogen (20-30% mortality rate) that 

is capable of causing listeriosis in immuno-compromised persons (31). This organism is 

ubiquitous in nature and can contaminate foods from various environmental sources during 

food processing, distribution, and storage. The ubiquity of L. monocytogenes in the 

environment and its ability to grow at refrigeration temperatures have made this pathogen a 

major food safety concern to food processors and public health regulatory agencies (13). L. 

monocytogenes can persist in various niches in meat processing facilities, even after 

vigorous cleaning and sanitation (30). Consequently, cooked meat products manufactured 

in well-managed processing plants may be contaminated with L. monocytogenes before 
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packaging (35). Current challenges faced by food processors to control L. monocytogenes 

increase the need for new intervention strategies to destroy this pathogen on ready-to-eat 

(RTE) meat products. 

A wide variety of chemical food additives are used to help prevent the outgrowth 

of pathogens and spoilage microorganisms in foods. There is, however, an increasing 

consumer demand for foods that are natural, minimally-processed, and convenient. This 

challenge is being met by an increase in food preservation research involving the use of 

naturally-produced antimicrobials, as opposed to conventional chemically-synthesized 

compounds. Some of the prospective biopreservative candidates for food use include: 

organic acids (32), plant-derived compounds, such as, peptides (38), spices (24), essential 

oils (16), and other extracts (11), and compounds derived from bacteria (29). A variety of 

bacterial metabolites have been evaluated for their antimicrobial properties. Non-

proteinaceous compounds include: organic acids, diacetyl, hydrogen peroxide, alcohols, 

carbon dioxide, and reuterin. Proteinaceous compounds include: various bacteriocins and 

siderophores (17). Siderophores are iron-chelating agents produced by a wide variety of 

bacteria, and several research efforts have focused on their potential medical applications 

for iron deprivation and as antibiotic carriers. Bacteriocins, however, have received a great 

deal of attention for their capacity to destroy target microorganisms (1,10). The food 

industry has paid the most attention to bacteriocins such as nisin, pediocin, lactocin, 

enterocin, leucocin, and colicin; however, nisin is currently the only bacteriocin that is 

allowed in foods, in its purified form. In light of the ongoing research involving bacterial-

derived proteinaceous compounds for the suppression and destruction of spoilage and 
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pathogenic foodborne microorganisms, it is apparent that other novel compounds similar to 

that of bacteriocins and siderophores may also possess antibacterial properties, as well. 

One of these potential compounds is methanobactin. 

Methanobactin is a novel extracellular fluorescent chromopeptide (1154 Da), 

produced by the methane-oxidizing bacterium, Methylosinus trichosporium OB3b. Under 

copper-limiting growth conditions, this compound accumulates to high amounts in the 

growth media, however, when copper is provided, copper-bound methanobactin (Mb-Cu) is 

rapidly internalized (36, 7). Methanotrophic bacteria have high copper requirements and 

Mb-Cu is thought to bind copper with 1:1 methanobactin:copper binding stoichiometry. It 

is thought to help mediate copper transport via a copper trafficking system, thus it has been 

termed a "chalkophore" for fulfilling the analogous role of iron-binding siderophores (23). 

Methane-oxidizing bacteria have been examined for their use in single-cell protein (SCP) 

production due to their ease of cultivation. Thus it seems feasible to explore the potential 

of this compound from an organism such as this, to be used as a biopreservative in foods. 

Methanobactin has a unique structure, and the characterization of this novel compound has 

only been recently elucidated (7, 9,21,22,23). To our knowledge there is no published 

research on antibacterial characteristics of methanobactin. Accordingly, the first objective 

of this research was to determine the minimum inhibitory concentration (MIC) of copper-

bound methanobactin (1217 Da) against L. monocytogenes and the effect of pH on its 

antimicrobial activity. In addition, growth rates were monitored to verify the MIC results 

and determine if there was any effect on growth. The second objective was to determine if 
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the effect, if any, was bactericidal or bacteriostatic. Copper-bound methanobactin is 

referred to as methanobactin throughout this paper unless indicated otherwise. 

MATERIALS AND METHODS 

Microorganism and inoculum preparation. L. monocytogenes Scott A NADC 

2045 serotype 4b (human isolate from a 1983 milk outbreak), obtained from the National 

Animal Disease Center (NADC), Agricultural Research Service (United States Department 

of Agriculture, Ames, IA), was used throughout the experiment. The culture was 

maintained as frozen (-20°C) stock in tryptic soy broth (Difco, Becton Dickinson and Co., 

Franklin Lakes, NJ) supplemented with 0.6% (wt/vol) yeast extract (Difco; TSBYE) and 

10% (vol/vol) glycerol. Prior to each experiment, the stock culture was transferred twice in 

10 ml of brain heart infusion (BHI; Difco) broth and incubated at 32°C for 18 h. The 

inoculum was then diluted 100-fold to achieve a population of-6.50 log CFU/ml (assay 

concentration) in BHI (pH 5.5, 6.0, 6.5, or 7.3) that had been previously adjusted with 5 N 

HC1. 

Methanobactin preparation. Lyophilized copper-bound methanobactin samples 

(referred to as methanobactin throughout this paper) were prepared using a modified 

protocol previously described by Choi et al. (8). Methanobactin samples were transferred 

to sterile 125-mm screw-capped test tubes, placed in Seward stomacher bags (Seward Ltd., 

London, England), and held on ice for one hour prior to irradiation. Samples were 

sterilized via electron-beam irradiation at the Iowa State University Linear Accelerator 
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Facility, which has a MeV CIRCE III Linear Electron Accelerator (MeV Industrie S. A., 

Jouy-en-Josas, France). Samples were irradiated at >30 kGy in the electron beam mode at 

an energy level of 10 MeV and an average dose rate of 58 kGy/min. Absorbed radiation 

doses were determined by the use of 5 (diameter) by 5 mm (length) dosimeter alanine 

pellets (Bruker Analytische Messtechnik, Rheinstetten, Germany) placed on the top and 

bottom surfaces of one stomacher bag containing Mb-Cu samples. Immediately after 

irradiation, the pellets were placed in a Bruker EMS 104 EPR Analyzer to measure 

absorbed doses by electron paramagnetic resonance. The average absorbed dose was 

obtained from the arithmetic average of the top and bottom surface readings. Sterile 

samples were stored at <-20°C and held for no longer than 2 months. 

Susceptibility assay. The bioassays were performed using a broth microdilution 

method with some modification (27). Stock solutions of Mb-Cu (1.2%, wt/vol; 9.86 mM) 

were aseptically prepared in BHI (pH 5.5, 6.0, 6.5, or 7.3) and diluted (2 ml) to final assay 

concentrations of 8.22, 7.40,6.58, 5.76,4.93, and 4.11 mM Mb-Cu followed by two-fold 

dilutions down to 0.06 mM Mb-Cu. All pH adjustments were performed using 5N HC1. 

Mb-Cu dilutions were transferred (lOO-fxl aliquots) to 96-well, round-bottom, polystyrene 

microtiter plates (Beckton Dickinson, Franklin Lakes, NJ). Twenty microliters of freshly 

cultured L. monocytogenes Scott A culture was added to the microtiter wells to give a total 

well volume of 120 pi. Negative controls used for sterility tests were non-inoculated BHI 

with or without Mb-Cu, while positive controls were inoculated BHI without Mb-Cu. 

Copper controls were also used by adding copper sulfate to BHI, in equimolar amounts to 
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that of Mb-Cu. Plates were covered and incubated statically at 32°C for 24 h. Absorbance 

was monitored spectrophotometrically (595 nm), after agitation, in 6-h increments using a 

Model 550 microplate reader (Bio-Rad Laboratories, Hercules, CA). The MIC values for 

Mb-Cu were determined at four pH values (5.5,6.0, 6.5, and 7.3) where they were 

designated as the lowest Mb-Cu concentration at which no turbidity was observed in the 

wells. 

Microbiological analysis. After incubation for 24 h, the contents of the microtiter 

plate wells were serially diluted in 0.1% peptone water and aliquots of appropriate dilutions 

were surface-plated, in duplicate, onto plates of BHI agar. All inoculated plates were 

incubated aerobically at 32°C and bacterial colonies were counted at 72 h. 

Data analysis. All experiments were repeated at least twice and the absorbance 

readings and microbiological counts (logio CFU/ml) are reported as means. Statistical 

Analysis System software program (SAS Institute Inc., Cary, NC) was used to identify the 

presence of significant differences, where data was compared using the mixed procedure. 

All pairwise differences were adjusted using the Bonferroni method. 

RESULTS 

Effect of pH on MIC. The broth microdilution assay demonstrated that Mb-Cu 

inhibits the growth of L. monocytogenes Scott A in BHI broth. In addition, antimicrobial 

effectiveness clearly depended upon the pH of the growth medium. A non-linear 



www.manaraa.com

relationship was observed between the pH of the growth medium and MIC of Mb-Cu. The 

most conducive pH for antimicrobial efficacy was pH 6.0, where the MIC was 4.11 mM 

Mb-Cu. The normal BHI broth (pH 7.3) proved to be the second-most effective of the pH 

values tested, displaying an MIC of 6.58 mM Mb-Cu. The highest MIC of Mb-Cu (7.40 

mM Mb-Cu) was observed at pH 6.5 and 5.5. These results demonstrate that there was an 

optimum pH in the middle of the range tested, for improving the performance of Mb-Cu to 

inhibit L. monocytogenes in growth media. Copper sulfate controls displayed no inhibition 

of the pathogen at 8.22 mM, or below, at any pH, thus indicating that the inhibition of 

copper-bound methanobactin could not be attributed to the effect of copper ions in solution 

(data not shown). 

Effect of methanobactin on growth of L. monocytogenes. Figure 1 displays 

selected growth rates of L. monocytogenes as affected by sub-lethal Mb-Cu concentrations 

and media pH. As the pH of the media decreased, control growth curves became less 

pronounced, indicating that the population concentrations were not as high and that the 

growth rates were also decreased. Overall, this observation held true when culture 

conditions included Mb-Cu. At pH 7.3, the two highest Mb-Cu concentrations, 5.76 and 

4.93 mM, displayed the slowest growth rates; however final absorbance (595 nm) 

measurements at 24 hours were higher than the control and other treatments. 

Methanobactin at 4.11 mM displayed an absorbance "bump", higher than other samples, at 

18 hours. The lowest 3 Mb-Cu concentrations (0.51,1.03, and 2.06 mM) had similar 

profiles, below that of the control. pH 6.5 growth curves show the Mb-Cu treatments, 
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where the control, as expected, displayed the highest profile, while the 3 lowest Mb-Cu 

concentrations were similar. The highest concentration (6.58 mM) produced the slowest 

growth rate of the pathogen; however, based on the absorbance at 24 hours, the final culture 

population was similar to the control. Methanobactin samples of 5.76 and 4.93 mM also 

produced slower growth rates (pH 6.5); however, 24-h absorbance readings were greater 

than the control. The most effective pH tested was 6.0. The pH 6.0 growth curves display 

substantially lower Mb-Cu concentrations than at other pH values because the MIC was 

much lower. At this pH, the control group displayed better growth than the treatment 

group, where growth rates decreased with increasing Mb-Cu concentration. However, L. 

monocytogenes grew nearly as well in the presence of the two highest Mb-Cu 

concentrations (2.06 and 1.03 mM); similar to the growth trend displayed by the higher 

concentrations at pH 7.3 and 6.5. L. monocytogenes grew the slowest at pH 5.5 where the 

control in this group grew the fastest. As Mb-Cu concentration increased, the growth rates 

decreased. The two highest concentrations (6.58 and 5.76 mM) displayed the slowest 

growth rates, where 6.58 mM displayed the lowest overall absorbance values for all curves. 

Overall, based on absorbance, sub-lethal amounts of Mb-Cu slowed growth of L. 

monocytogenes in some cases; however, the organism was still able to grow to high 

populations, similar to that of the control. 

Two other observations were made in regards to the absorbance data. The first was 

that lines displaying higher Mb-Cu concentrations tended to become negative in slope 

before growth occurred. The other was when final 24-h absorbance readings were plotted 

against Mb-Cu concentration (Figures 2 to 5), a peculiar trend became apparent. Final 
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absorbance readings ofZ. monocytogenes exposed to Mb-Cu concentrations in the middle 

of the range tested, displayed a consistent "dip" but as the concentrations increased to near 

that of the MIC, an increase was observed. At pH 6.0 and 5.5 this increase was near to or 

lower than that of the control but at pH 7.3 and 6.5, this increase resulted in a higher 

absorbance than the control. This does not fully agree with the viability data displayed on 

the same plots (Figures 2 to 5). 

Effect of methanobactin on viability of L. monocytogenes. Figures 2 to 5 show 

log numbers of L. monocytogenes survivors after 24-h incubation in BHI (pH 7.3, 6.5, 6.0, 

and 5.5) containing varying amounts of Mb-Cu. In general, as the pH of the media 

decreased, L. monocytogenes was unable to grow to as high a population, but this difference 

was slight. At sub-inhibitory methanobactin concentrations, there seemed to be no decrease 

in viability, after 24 h. In fact, L. monocytogenes was able to grow to as a high population 

as the control groups (~109 CFU/ml). The mean initial population was 6.44 log CFU/ml; 

therefore these group populations increased by -2.50 log CFU/ml. 

Methanobactin appeared to be highly bactericidal towards L. monocytogenes but 

possessed little to no bacteriostatic activity. There was no decrease in viability until the 

concentration reached the MIC, the lowest concentration at which there was no observed 

growth. At pH 7.3, Mb-Cu concentrations of 6.58, 7.40, and 8.22 mM reduced L. 

monocytogenes populations by 3.28-, 3.72-, and 4.28-log cycles, respectively. Growth 

media at pH 6.5 containing 7.40 and 8.22 mM Mb-Cu reduced populations by 3.90- and 

3.82-log cycles, respectively. The most promising pH value tested, 6.0, resulted in drastic 



www.manaraa.com

95 

reductions in L. monocytogenes populations. At 4.11 mM (the MIC) methanobactin, a 

4.81-log reduction was observed. At the higher concentrations tested at pH 6.0, all viable 

counts fell below the detection limit, indicating a >5.00 log reduction. BHI at pH 5.5, 

containing 7.40 mM Mb-Cu, reduced L. monocytogenes counts by 4.87 logs, and 8.22 mM 

lowered viability below detection (<1.00 log CFU/ml). 

DISCUSSION 

Mb-Cu is hypothesized to be an agent for copper sequestration and uptake in 

Methylosinus trichosporium OB3b, an analogous function of the iron-binding siderophores, 

produced by a vast number of microorganisms (21, 22, 23). Studies involving the use of 

siderophore-antibiotic conjugates have proven quite effective for drug delivery into 

pathogenic microorganisms (26); however, these applications are not acceptable for use in 

foods as a means of controlling fbodbome microorganisms, nor is the antimicrobial activity 

associated with the siderophore when used as a carrier. In vitro investigations of the 

antimicrobial activity of siderophores have led to varying results. Hartzen et al. (15) found 

that the siderophore deferoxamine, alone at 200 (ig/ml, had no effect on Staphylococcus 

aureus, unless it was used in combination with ascorbic acid (pH 7.3-7.6). They also noted 

that inhibitory concentrations of these combinations only had an effect for 6 h, where 

bacterial growth could overcome the compounds at 24 h, unless additional siderophore was 

added during the assay. Cheng et al. (6) isolated 3 strains of this siderophores-producing 

organisms from chicken and ground pork. They found that the siderophores inhibited the 

growth of L. monocytogenes and several gram-negative fbodbome pathogenic bacteria by 
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way of restricting iron availability. Several studies have demonstrated a minimal 

antimicrobial effect for siderophores alone, and observed activity has been attributed only 

to the siderophores binding iron, rendering it unavailable for susceptible organisms, thereby 

causing iron starvation (5,14,25, 33). However, very few studies have used purified 

siderophores in known amounts to study their antimicrobial effectiveness. This proves 

difficult when attempting to compare purified amounts of copper-bound methanobactin to 

non-purified iron-binding siderophores needed to effectively inhibit target microorganisms. 

Bacteriocins are another class of compounds worth comparing to Mb-Cu due to the fact that 

they are also proteinaceous compounds produced by many bacteria, and many of which 

have similar molecular weights. 

There have been many bacteriocins evaluated for the use in the inhibition and/or 

destruction of L. monocytogenes but we will focus our comparisons to the most rigorously 

studied bacteriocins for use in foods. Nisin is well known to possess antilisterial activity 

and its effect is strain dependent. MICs for nisin on tryptic soy agar (TSA) have ranged 

from 18.5 to 3000 |ig/ml (740 to 120,000 IU/ml), where the value for L. monocytogenes 

Scott A was 300 jig/ml (3). These values are quite lower than the MICs of methanobactin, 

which were 4.11 to 7.40 mM (5000-9000 gg/ml) depending on the pH of the media; 

however, a difference in media and methodology may play a role. Pediocin PA-1 inhibited 

the growth of L. monocytogenes at 54.7 AU/ml; however initial inoculum concentrations 

were only ~103 cells/ml (28). Hoover et al. (18) demonstrated that 8 different L. 

monocytogenes strains were susceptible to pediocin-producing Pediococcus spp. The 
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authors also noted that one L. monocyotogenes strain generated a resistant sub-population 

after continued exposure to the growth extracts. 

In the present study, Mb-Cu has been clearly shown to inhibit L. monocytogenes 

Scott A; however, effectiveness may also differ based on pathogen strain. There are limited 

similarities of Mb-Cu to other naturally-produced biopreservatives, such as siderophores 

and bacteriocins. Taking this into account, Mb-Cu is one of the first reported bacterial-

derived compounds that has a concrete metabolic function (to provide methanotrophic 

bacteria with copper under limited conditions), yet also possess such good antilisterial 

activity. This is what sets this novel natural biopreservative apart from the many others that 

have been evaluated for controlling fbodbome pathogens. The effective concentrations 

needed to inhibit L. monocytogenes may be economically feasible and practical, depending 

on the pH of the system. 

The pH values used in this study were selected because of their relevance in many 

food systems, especially RTE meats where pH values range from 4.7 to 6.5 (19). We 

demonstrated that the pH of the suspending medium (adjusted with HC1) influenced the 

MIC of Mb-Cu against L. monocytogenes, where it was effective from pH 5.5 to 7.3, with 

an optimum at pH 6.0, and slightly increased effectiveness at pH 7.3. This peculiar trend is 

difficult to explain given the limited knowledge of Mb-Cu's effect on bacterial physiology. 

According to Kim et al. (22), lowering the pH to 5.0 altered the UV-Vis spectrum of Mb-

Cu in the 356 nm region to that of metal-free, or apo-methanobactin (Mb), suggesting a loss 

of copper. Copper coordination is likely prerequisite for stability and antibacterial activity. 

It is possible that some Mb-Cu activity is lost as the pH approaches 5.5, which could 
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increase the MIC. Acid sensitivity has also been demonstrated for the iron-binding ligand 

of the siderophore azotobactin D, produced by Azotobacteri vinelandii (12). It is well 

known that most bacteriocins have improved antimicrobial effectiveness at acid pH, 

however, this has not always been shown to be true. Interestingly, pH 6.0 has also been 

shown to be optimal for bacteriocin activity, such as: bavaricin MN-influenced 

carboxyfluorescein efflux in L. monocytogenes lipid vesicles (20), nisin-Z induced K+ 

efflux in L. monocytogenes (2), and nisih-induced cell death of Staphylococcus aureus (34). 

These researchers did not offer any possible structure-function explanation for this 

phenomenon. Although it may influence the way in which Mb-Cu interacts with the cell 

envelope, nothing is known regarding the oxidation state of Mb-Cu and its relationship to 

pH. Solubility of Mb-Cu in BHI, adjusted to various pH values, did not seem to differ 

based on visual inspection. Other factors that the pH of the suspending medium may 

influence are: overall net charge of media proteinaceous constituents, Mb-Cu net charge, 

media-methanobactin interaction, cell membrane-methanobactin interaction, antimicrobial 

mode of action chemistry of Mb-Cu, and pH-influenced physiological changes of L. 

monocytogenes cells. 

Periodic absorbance (595 nm) measurement of the bacterial suspensions in the 

microliter wells during the 24-h incubation period were not only useful for the verification 

of the MIC values attained, but also provided some information on how Mb-Cu affects the 

growth rate of L. monocytogenes. Spectophotometric monitoring of L. monocytogenes 

growth during exposure to Mb-Cu at various pH values demonstrated that overall there was 

little significant effect on the growth profiles compared to that of the controls. The growth 
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curves in Figure 1 show that high sub-lethal concentrations of Mb-Cu seem to increase the 

lag phase during growth except a pH 6.0. This exception may be attributed to the very low 

concentrations displayed compared to those at other pH values. Overall, outgrowth of 

cultures (~109 CFU/ml) occurred at all sub-lethal concentrations of Mb-Cu, regardless of 

pH; this is further supported by the viability data (Figures 2-5). Negative absorbance 

readings were frequently observed for cultures exposed to sub-lethal Mb-Cu concentrations, 

and for most absorbance measurements at lethal concentrations (data not shown). 

Although this may indicate that L. monocytogenes was undergoing cell lysis, further studies 

in buffer have not been able demonstrate this, indicating this could be an artifact of the 

analysis or possibly due to some cell clumping (data not shown). As previously mentioned, 

when final absorbance readings were plotted against Mb-Cu concentration (Figures 2-5), a 

"dip" was observed followed by an increase just before inhibitory concentrations were 

used. This was consistently observed with limited variation throughout the experiment, as 

shown by the standard deviations found on these plots. Changes in overall cell shape, size, 

and aggregation were not seen when examined under a bright-field light microscope (data 

not shown). This trend might reflect the behavior of L. monocytogenes cultures when 

exposed to Mb-Cu and may help elucidate the mechanism of action of Mb-Cu on L. 

monocytogenes cells. 

In general, sub-inhibitory methanobactin concentrations did not affect the viability 

of L. monocytogenes, after 24 h, where results showed growth similar to that of the controls 

(~109 CFU/ml). However, pH of the growth media has a profound effect on the efficacy of 

this compound for use in destroying L. monocytogenes and depending on the pH, Mb-Cu 
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inhibitory concentrations and higher, resulted in population reductions ranging from 3.28 to 

>5.00 log-cycles of the pathogen. This indicates that Mb-Cu is bactericidal towards L. 

monocytogenes and displays little to no bacteriostatic activity. These results also 

demonstrate that in order for methanobactin to have an effect on L. monocytogenes, a 

threshold methanobactin concentration must be exceeded, where L. monocytogenes cannot 

tolerate the presence of the compound at concentrations higher than this value, and is 

consequently destroyed. In short, the most effective treatment was 4.93 mM Mb-Cu at pH 

6.0, resulting in a >5.00-log reduction, however, 4.11 mM Mb-Cu at this pH decreased 

counts by 4.81 log-cycles. Such drastic cell death may point to methanobactin-cell 

membrane interaction, however follow-up studies have not shown significant lysis, but only 

slight leakage of UV-absorbing material (data not shown). Destabilization of the bacterial 

cell membrane is a pH-dependent mode of action for many antimicrobial peptides, 

including nisin (1,2), pediocin (4) and other bacteriocins (20, 37). This notion is further 

supported by preliminary studies demonstrating that the respiration ofZ. monocytogenes 

cultures is affected by methanobactin, and at 8.22 mM concentrations, rapid cell death 

occurs within 1 h (data not shown). 

The natural compound methanobactin, produced by Methylosinus trichosporium 

OB3b, has proven to be a very effective biopreservative for the destruction of Listeria 

monocytogenes. The fact that this compound fulfills an essential metabolic role for this 

ecologically-friendly, producer-organism, sets it apart from many other naturally-produced 

biopreservatives used to control fbodbome pathogens in foods. To our knowledge, this is 

the first published report of Mb-Cu's antimicrobial activity, leaving many questions to be 
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answered. Further optimization of the test conditions may allow lower levels of Mb-Cu 

needed to achieve a desired antimicrobial effect. This may include Mb-Cu in combination 

with surfactants, chelators, or other food preservation methods (i.e. thermal, irradiation). 

Studies need to determine the antimicrobial efficacy of Mb-Cu against other fbodbome 

pathogens, especially gram-negative organisms. Safety studies need to be conducted to 

determine if this compound may have allergenic properties or other toxicological effects. 

Finally, these results need to be corroborated in real food systems because the required 

levels to inhibit microbial growth will likely be considerably higher for foods than for 

culture media. However, Mb-Cu shows promise as a biopreservative to control L. 

monocytogenes given that initial inoculum levels were unrealistically high in this study. 

There is a good possibility of Mb-Cu isolation on an industrial scale, which will reduce the 

overall costs of its manufacture. Mb-Cu may be potentially used as a spray or dip for 

various RTE meat products based on its activity at moderate acidic pH values, or possibly 

for incorporation into food packaging (active packaging). 
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Figure 1. Selected growth curves determined by absorbance (595 nm) of L. 
monocytogenes Scott A bacterial suspensions in BHI at different pH at sub-lethal 
concentrations (mM) of methanobactin: Control (•), 0.06 (X), 0.13 (*), 0.26 (—), 0. 
(•), 1.03 (A), 2.06 (A), 4.11 (•), 4.93 (O), 5.76 (•), and 6.58 (O). 
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Initial 0 0.06 0.13 0.26 0.51 1.03 2.06 4.11 4.93 5.76 6.58 7.40 8.22 

Methanobactin Concentration (mM) 

Figure 2. Listeria monocytogenes Scott A survivors (bars) following 24-h incubation 
(32°C) in BHI (pH 7.3) with varying amounts of methanobactin and the final, 24-h 
absorbance (595 nm) readings (—#—) of the bacterial suspensions in the microtiter wells. 
Values represent the means of at least three replicates ± SD (error bars) and asterisks 
indicate significant differences (P<0.05) between treatment means. 
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Figure 3. Listeria monocytogenes Scott A survivors (bars) following 24-h incubation 
(32°C) in BHI (pH 6.5) with varying amounts of methanobactin and the final, 24-h 
absorbance (595 nm) readings (—•—) of the bacterial suspensions in the microtiter wells. 
Values represent the means of at least three replicates ± SD (error bars) and asterisks 
indicate significant differences (P<0.05) between treatment means. 
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Figure 4. Listeria monocytogenes Scott A survivors (bars) following 24-h incubation 
(32°C) in BHI (pH 6.0) with varying amounts of methanobactin and the final, 24-h 
absorbance (595 nm) readings (—#—) of the bacterial suspensions in the microtiter wells. 
Values represent the means of at least three replicates ± SD (error bars) and asterisks 
indicate significant differences (P<0.05) between treatment means. 
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Figure 5. Listeria monocytogenes Scott A survivors (bars) following 24-h incubation 
(32°C) in BHI (pH 5.5) with varying amounts of methanobactin and the final, 24-h 
absorbance (595 nm) readings (—#—) of the bacterial suspensions in the microtiter wells. 
Values represent the means of at least three replicates ± SD (error bars) and asterisks 
indicate significant differences (P<0.05) between treatment means. 
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CHAPTER 4. BACTERICIDAL ACTIVITY OF METHANOBACTIN 
IN COMBINATION WITH VARIOUS SURFACTANTS 

AGAINST LISTERIA MONOCYTOGENES SCOTT A 

A paper to be submitted to the Journal of Food Protection 

Clinton L. Johnson1, Aubrey F. Mendonca1*, Alan A. DiSpirito2, 
Anthony L. Pometto III1, and James S. Dickson3 

ABSTRACT 

Methanobactin is a novel extracellular chromopeptide produced by the methanotroph, 

Methylosinus trichosporium OB3b, a nonfastidious bacterium important in global carbon 

cycling and single-cell protein production. This study investigated the effect of pH (5.75 to 

6.25) and surfactants (Tween 20, Tween 80, and sodium lauryl sulfate) at 0.25 and 0.50% 

on the antimicrobial efficacy of copper-bound methanobactin against Listeria 

monocytogenes Scott A in brain heart infusion (BHI) broth. Minimum inhibitory 

concentrations (MICs) were determined at 24 h for stationary-phase L. monocytogenes 

cultures in BHI (32°C) via use of a broth micro-dilution method. Growth was monitored 

spectrophotometrically (595 nm) and viability was determined after 24-h exposure via 
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surface-plating samples onto BHI agar and enumerating colonies after incubation (72 h, 

32°C). The MIC of methanobactin alone was 2.06 mM regardless of pH. Tween 

surfactants, especially Tween 80, were antagonistic to methanobactin activity. This 

antagonistic effect was more pronounced with increasing pH and surfactant concentration. 

In contrast, growth did not occur in samples containing sodium lauryl sulfate (SLS) with or 

without methanobactin. Synergistic combinations of methanobactin (1.03 mM) and SLS 

(0.25%), at pH 5.75, reduced L. monocytogenes populations by 5.33-log cycles, whereas 2-

fold higher concentrations of methanobactin (2.06 mM) without SLS were required to 

achieve this same reduction. Increasing the pH only slightly reduced the effectiveness of 

the methanobactin/SLS treatments. These results clearly demonstrate that surfactants, 

depending on type, can have an antagonistic or synergistic effect on methanobactin activity. 

A combination of SLS with methanobactin showed improved listericidal activity, 

demonstrating that this system has good potential for use in food applications. 

INTRODUCTION 

Listeria monocytogenes is a psychrotrophic fbodbome pathogen and the serious 

illness associated with it has a 20-30% mortality rate (25). In addition, food processors find 

this "hardy" contaminant particularly difficult to eliminate from the processing environment 

due to its ubiquity in nature. In 2004, the United States Department of Agriculture - Food 

Safety and Inspection Service (USDA-FSIS) reported that the L. monocytogenes Interim 

Final rule had improved the safety of ready-to-eat (RTE) meats and poultry, where recalls 

dropped one-third from 2002 to 2004 (8). However, earlier this year, the United States 
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Center for Disease Control and Prevention (CDC) reported that the U. S. fell short of its 

2005 goal to reduce cases of fbodbome listeriosis by 50% (9). In light of this recent 

announcement it seems clear that there are still improvements to be made in controlling L. 

monocytogenes in foods. Control measures may include exploring newer technologies and 

food preservation methods as consumer tastes, preferences, and lifestyles evolve. There is 

an increasing consumer demand for foods that are natural, minimally-processed, and 

convenient. This trend has sparked research interest involving the use of naturally-

produced antimicrobials as a replacement for chemically-synthesized compounds for the 

preservation of foods. 

Some of these biopreservative candidates for food use include: organic acids (26), 

plant-derived compounds, such as, peptides (29), spices (18), essential oils (13), and other 

extracts (5). A variety of bacterial metabolites have been evaluated for their antimicrobial 

properties where proteinaceous compounds include various bacteriocins and siderophores 

(14). Siderophores are iron-chelating agents and most of the research on these compounds 

have focused on potential medical applications. Bacteriocins, however, have received a 

great deal of attention for their capacity to destroy target microorganisms in foods (4). Both 

of these classes of compounds are found widespread in nature, however, nisin is the only 

bacteriocin currently allowed in foods, in its purified form. 

Recent work in our laboratory indicated that methanobactin, a compound produced 

by the methane-oxidizing bacterium, Methylosinus trichosporium OB3b (15), possesses 

antilisterial properties in broth laboratory media. Methanobactin is a novel extracellular 

fluorescent chromopeptide (1154 Da), that accumulates to high amounts in growth media 
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under copper-limiting conditions; however, when copper is provided, methanobactin is 

rapidly internalized (3, 28). This compound, now termed a "chalkophore" for its analogous 

role to iron-binding siderophores (16), shows similarity to bacteriocins due to its 

antimicrobial activity and possession of unique constituents; a characteristic of some 

bacteriocins. Methane-oxidizing bacteria have been examined for their use in single-cell 

protein (SCP) production due to their ease of cultivation, thus it seems practical to pursue 

the potential use of this biopreservative for the destruction of L. monocytogenes in foods. 

We previously found that pH 6.0 permitted the use of copper-bound methanobactin in the 

lowest amount (4.11 mM), to inhibit the growth of L. monocytogenes Scott A. Although 

this amount is practical and economically reasonable, researchers have used a variety of 

surfactants and other compounds to help lower antimicrobial concentrations needed to 

display the same effect (7, 12, 27). 

Surfactants (surface-active agents) are known to decrease the surface tension 

between polar and nonpolar groups thereby allowing them to come in closer proximity to 

one another. It is thought that surfactants may heighten bacterial sensitivity to certain 

antimicrobials by destabilizing the cell membrane, however, the mechanism is not fully 

understood (19). In addition, if surfactants are added to antimicrobial dip or spray 

formulations for foods, there may also be improved "wettability" of the food surface 

allowing more uniform distribution of the antimicrobial substance (24). Although there are 

a vast number of surfactants that fall within different classes (i.e. anionic and nonionic), 

there are a small number that have been intensely studied for the control of fbodbome 

pathogens in various foods. The surfactants Tween 20 and 80 (polyoxyethylene sorbitan 
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monoesters), and sodium lauryl sulfate were selected for this study because of their 

generally-recognized-as-safe (GRAS) status and approval for food use. The objectives of 

this study were: (1) Determine the effect of different surfactants (at 0.25 and 0.50%), and 

pH (5.75-6.25) on the antimicrobial efficacy of copper-bound methanobactin (1217 Da) 

against L. monocytogenes Scott A, as measured by minimum inhibitory concentrations 

(MICs); (2) Monitor growth curves to verify the MIC results and determine if there was 

any effect on growth via turbidometric measurement; and (3) Evaluate viability of L. 

monocytogenes after exposure to methanobactin treatments by spread plating onto 

microbiological media. 

MATERIALS AND METHODS 

Microorganism and inoculum preparation. L. monocytogenes Scott A NADC 

2045 serotype 4b (human isolate from a 1983 milk outbreak), obtained from the National 

Animal Disease Center (NADC), Agricultural Research Service (United States Department 

of Agriculture, Ames, IA), was used throughout the experiment. The culture was 

maintained as frozen (-20°C) stock in tryptic soy broth (Difco, Becton Dickinson and Co., 

Franklin Lakes, NJ) supplemented with 0.6% (wt/vol) yeast extract (Difco; TSBYE) and 

10% (vol/vol) glycerol. Prior to each experiment, the stock culture was transferred twice in 

10 ml of brain heart infusion (BHI; Difco) broth and incubated at 32°C for 18 h. The 

inoculum was then harvested by centrifugation (10,000 * g, 10 min) in a refrigerated (4°C) 

centrifuge (Sorvall Super T21; DuPont Instruments, Wilmington, DE). The cells were 

washed once in 0.02M 2-morpholinoethanesulfonic acid (MES) buffer (pH 5.75, 6.00, or 
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6.25; Sigma, St. Louis, MO) and diluted 100-fold by resuspension in 0.1M MES buffer (pH 

5.75, 6.00, or 6.25) to achieve a population of -6.50 log CFU/ml (assay concentration) 

when transferred in 20-pl aliquots. 

Surfactant preparation. Stock solutions (1.2%) of Tween 20 (vol/vol; Fisher 

Scientific, Pittsburgh, PA), Tween 80 (vol/vol; Fisher), and sodium lauryl sulfate (wt/vol; 

Sigma) were prepared in 0.1 M MES buffer (pH 5.75, 6.00, or 6.25), diluted 2-fold to make 

0.6% solutions, and sterilized by autoclaving (121°C, 15 psi, 15 min). From these 

solutions, 50-fxl aliquots were used to achieve assay concentrations of 0.25 and 0.50% 

surfactant. This was performed for all surfactants at all pH values. 

Methanobactin preparation. Lyophilized copper-bound methanobactin samples 

(referred to as methanobactin throughout this paper) were prepared using a modified 

protocol previously described by Choi et al. (5). Methanobactin samples (12 mg) were 

transferred to 1.5-ml polystyrene microcentrifuge tubes (Eppendorf, Westbury, NY), placed 

in Seward stomacher bags (Seward Ltd., London, England), and held on ice for one hour 

prior to irradiation. Samples were sterilized via electron-beam irradiation at the Iowa State 

University Linear Accelerator Facility, which has a MeV CIRCE III Linear Electron 

Accelerator (MeV Industrie S. A., Jouy-en-Josas, France). Samples were irradiated at >30 

kGy in the electron beam mode at an energy level of 10 MeV and an average dose rate of 

58 kGy/min. Absorbed radiation doses were determined by the use of 5 (diameter) by 5 

mm (length) dosimeter alanine pellets (Bruker Analytische Messtechnik, Rheinstetten, 
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Germany) placed on the top and bottom surfaces of one stomacher bag containing 

methanobactin samples. Immediately after irradiation, the pellets were placed in a Bruker 

EMS 104 EPR Analyzer to measure absorbed doses by electron paramagnetic resonance. 

The average absorbed dose was obtained from the arithmetic average of the top and bottom 

surface readings. Sterile samples were stored <-20°C and held for no longer than 2 months. 

Susceptibility assay. The bioassays were performed according to a broth 

microdilution method with some modification (21). Irradiated methanobactin samples were 

used to aseptically prepare 1.2% (wt/vol) stock methanobactin solutions (9.86 mM) in 

2.4*BHI (pH 5.75, 6.00, or 6.25) that had been previously adjusted with 5 N HC1. Two­

fold dilutions of these stock solutions (1 ml) were performed in 2.4*BHI (pH 5.75, 6.00, or 

6.25) to give a series of test concentrations ranging from 4.11 to 0.06 mM. Methanobactin 

dilutions were transferred (50-^1 aliquots) to 96-well, round-bottom, polystyrene microtiter 

plates (Becton Dickinson, Franklin Lakes, NJ). Addition of 50 p,l of the surfactant 

solutions and 20 pi of freshly prepared L. monocytogenes Scott A culture were then added 

to the wells to give a total well volume of 120 |il. An appropriate aliquot of MES buffer 

(0.1M, pH 5.75, 6.00, or 6.25) was used when treatments required 0% surfactant. Negative 

controls used for sterility tests were uninoculated BHI with or without methanobactin and 

surfactant, while positive controls were inoculated BHI without methanobactin. Plates 

were covered and incubated statically at 32°C for 24 h. Absorbance was monitored 

spectrophotometrically (595 nm), after agitation, in 6-h increments using a Model 550 

microplate reader (Bio-Rad Laboratories, Hercules, CA). The MIC values for 
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methanobactin were determined at three pH values (5.75,6.00, and 6.25) and three different 

surfactants (each at 0.25 and 0.50%) where they were designated as the lowest 

methanobactin concentration at which no turbidity was observed in the wells. In all, there 

were 168 unique treatment combinations tested. 

Microbiological analysis. After incubation for 24 h, certain microtiter plate wells 

were selected for viability determination by aseptically removing the contents and serially 

diluting them in 0.1% peptone water. Aliquots of appropriate dilutions were surface-plated, 

in duplicate, onto plates of BHI agar. All inoculated plates were incubated aerobically at 

32°C and bacterial colonies were counted at 72 h. 

Data analysis. All experiments were repeated at least twice and the absorbance 

readings and microbiological counts (logic CFU/ml) are reported as means. Statistical 

Analysis System software program (SAS Institute Inc., Cary, NC) was used to identify the 

presence of significant differences, where data was compared using the mixed procedure. 

All pairwise differences were adjusted using the Bonferroni method. 

RESULTS 

Treatment effects on the inhibition of L. monocytogenes. All MIC results are 

summarized in Table 1. Regardless of pH, the MIC of methanobactin alone was 2.06 mM, 

where this was confirmed by no change in absorbance after 24 h. The combination of 

Tween 20 (T20) and Mb-Cu displayed lesser inhibition of L. monocytogenes cultures. As 
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media pH increased, the MIC of Mb-Cu increased, indicating a higher concentration needed 

to inhibit the pathogen. This trend also seemed to be dependent on surfactant 

concentration, as well. At pH 5.75, the MICs of Mb-Cu were 2.06 mM for both 

concentrations of T20. However, the MIC increased to 4.11 mM with the addition of 0.50 

and 0.25% T20, at pH 6.00 and 6.25, respectively. The addition of Tween 80 (T80) had an 

even more antagonistic effect on the MIC of Mb-Cu than T20 with the MIC seemingly 

dependent on both pH and surfactant concentration, similar to that of T20. At pH 5.75, the 

MIC of Mb-Cu with 0.25% T80 was 2.06 mM; however, this increased to 4.11 mM at pH 

6.00 and 6.25. The MIC of Mb-Cu increased to 4.11 mM, when combined with 0.50% 

T8O, at all pH values. The use of sodium lauryl sulfate (SLS), at either concentration, did 

not allow the growth of L. monocytogenes cultures, therefore final absorbance and MIC 

results were unfortunately not obtainable. 

Final 24-h absorbance readings (Absfinai-Absintiai) of the bacterial suspensions, in the 

presence of methanobactin with or without T20 or T80, in different pH conditions are 

shown in Figure 1. A peculiar trend in final absorbance as influenced by Mb-Cu 

concentration was also observed (Figure 1). As the curves approached the MIC values, 

there seemed to be a "dip" followed by an upward trend in the final absorbance of the 

cultures. This was even more pronounced as pH increased and with samples containing 

T20 and T80. Plotting 6-, 12-, and 18-h absorbance values in this way also displayed the 

same profile (data not shown). This consistent trend did not correspond with viability data 

(not shown), where control populations were nearly the same as those exposed to these sub­

inhibitory Mb-Cu concentrations. Changes in overall cell size, shape, and aggregation were 
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not apparent during examination of the cells under a bright-field light microscope. In 

addition to determining the MIC of Mb-Cu as influenced by pH, surfactant type, and 

surfactant concentration, growth of cultures exposed to sub-inhibitory concentrations of 

Mb-Cu with or without surfactants, were also monitored. 

Sub-inhibitory treatment effects on the growth of L. monocytogenes. Figure 2 

displays an example of the growth profiles of L. monocytogenes in the presence of sub­

inhibitory concentrations of methanobactin without surfactants, in different pH conditions. 

Overall, control (0 mM) absorbance values decreased with decreasing pH indicating slower 

growth in more acidic BHI. Populations exposed to the experimental treatments followed 

the same pattern. The profiles exhibited a reasonable trend, displaying overall reduced 

growth with increasing Mb-Cu concentration. Culture growth was slowest at 1.03 mM Mb-

Cu, but increased with increasing pH, indicating that pH 5.75 was the most effective. The 

addition of T20 to the growth medium, without Mb-Cu, resulted in only slight decreases in 

absorbance compared to the control groups, whereas T80 had no effect (data not shown). 

Growth profiles of L. monocytogenes exposed to treatments containing both Mb-Cu and 

T20 appeared similar to Figure 1; however, the lines displaying different Mb-Cu 

concentrations were in closer proximity to one another. This was similar for samples 

containing T80, but to a lesser extent. The concentration of these surfactants did not seem 

to have an impact on the growth curves, as well (data not shown). As mentioned, growth of 

L. monocytogenes in the presence of SLS could not be examined due to a lack of increase in 
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absorbancy of the samples. It is worth noting that many of the inhibitory treatments, 

including SLS, resulted in very noticeable negative absorbance readings. 

Treatment effects on the survival of L. monocytogenes. Figure 3 displays the 

survivors for the T20/Mb-Cu treatments in different pH conditions. Control samples grew 

from the 6.59 log CFU/ml-initial inoculum concentration to 8.97, 9.07, and 9.18 log 

CFU/ml (P<0.05) at pH 5.75, 6.00, and 6.25, respectively. Survivors were not detectable 

(<1.00 log CFU/ml) at the Mb-Cu MIC (2.06 mM) and above, when used alone at any pH, 

indicating a >5.59-log reduction for these samples (P<0.05). Methanobactin alone, at 1.03 

mM, resulted in growth to 8.03, 8.75, and 9.10 log CFU/ml at pH 5.75, 6.00, and 6.25, 

respectively. Growth at and below 0.51 mM Mb-Cu and below, were similar those of the 

control groups. T20 alone was similar to the control groups in that it did not affect the 

growth of L. monocytogenes, at any pH. Combining T20 with Mb-Cu increased the 

tolerance of L. monocytogenes to Mb-Cu. In agreement with the inhibition results, T20 

antagonism was higher with both increasing T20 concentration and pH. For example, at pH 

6.00, addition of 0.50% T20 to 2.06 mM Mb-Cu did not reduce L. monocytogenes 

populations, where 2.06 mM alone resulted in undetectable numbers. At pH 6.25, 

outgrowth occurred in samples containing 0.25 and 0.50% T20 with 2.06 mM Mb-Cu. 

L. monocytogenes survivors following exposure (24 h) to Mb-Cu, T80, and 

combination in different pH conditions are shown in Figure 4. Viability results 

demonstrated that T80 was very antagonistic to Mb-Cu activity, and that T80, alone, did not 

prevent growth in any pH condition. No cells were recovered from the 2.06 mM Mb-Cu 
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alone. The combination of 0.25% T80 with 2.06 mM Mb-Cu, at pH 5.75, resulted in a 

4.07-log reduction of L. monocytogenes. However, culture outgrowth occurred when 

0.50% T80 was used. When 0.25% T80 was used at pH 6.00, the population increased to 

6.92 log CFU/ml, whereas the higher concentration of T20 was required to have this effect 

at pH 6.00. Complete outgrowth was observed at pH 6.25 when T80 was used in 

combination with 2.06 mM Mb-Cu. 

Contrary to T20 and T80, SLS was effective at enhancing the bactericidal effect of 

methanobactin against L. monocytogenes (Figure 5). SLS (0.25%) reduced initial 

populations by 1.59-, 2.24-, 2.09-log cycles at pH 5.75, 6.00, and 6.25, respectively 

(P<0.05). The higher concentration (0.50%) of SLS was slightly more effective where it 

reduced populations by 1.74-, 2.38-, and 2.45-log cycles, with increasing pH; however, 

these results were not significantly different from those obtained from using 0.25% SLS. 

The combination of SLS at either concentration, with >2.06 mM Mb-Cu, resulted in 

undetectable numbers at all pH values (P<0.05), showing no difference from results 

produced by using >2.06 mM Mb-Cu alone. Outgrowth occurred in samples containing 

1.03 mM Mb-Cu alone, however, when combined with 0.25% SLS, viability was reduced 

by 5.33-, >4.59-, and 4.33-log cycles at pH 5.75, 6.00, and 6.25, respectively. Combination 

of 1.03 mM Mb-Cu with 0.50% SLS resulted in 5.06-, >4.59-, and >4.59-log reductions, 

with increasing pH. Overall differences in results were not significant between SLS 

concentrations. More importantly, synergy occurred within these treatments because 

outgrowth occurred in the presence of 1.03 mM Mb-Cu alone, but combinations of 1.03 

mM Mb-Cu with 0.25% SLS resulted in counts that were 3.74-, 2.35-, and 2.24-log cycles 
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lower than samples containing only 0.25% SLS, at pH 5.75, 6.00, and 6.25, respectively 

(P<0.05). Once again, increasing the pH lowered the effectiveness of these treatments, and 

overall differences were not significant between SLS concentration (P>0.05). Outgrowth 

was observed in samples containing 0.51 mM Mb-Cu alone, however, reductions occurred 

when combined with SLS. The higher SLS concentration (0.50%) was not significantly 

different than 0.25%, when combined with 0.51 mM Mb-Cu. Populations were 0.58-, 

1.85-, and 1.50-log cycles lower than 0.50% SLS alone, at pH 5.75, 6.00, and 6.25, where 

the mean at pH 5.75 was not significantly lower. Interestingly, the optimum pH was 6.00 

for these treatments. Regardless of pH, treatments containing 0.26 mM Mb-Cu and SLS 

were similar to samples containing only SLS. Overall, the destruction of L. monocytogenes 

was greatest when using 2.06 mM Mb-Cu with or without SLS. However, 1.03 mM Mb-

Cu could be used when in combination with 0.25% SLS (pH 5.75), and still achieve 5.33-

log reductions. Another practical treatment was 0.51 mM Mb-Cu/0.50% SLS (pH 6.00), 

where it reduced populations by 4.23-log cycles. 

DISCUSSION 

We demonstrated that methanobactin effectively inhibited L. monocytogenes Scott 

A at a concentration of 2.06 mM, regardless of the pH conditions tested. The selected pH 

range was based on results of our previous findings, where at pH 6.00 in BHI, the MIC of 

Mb-Cu was 4.11 mM (data not shown). The results to this study demonstrated a 2-fold 

lower MIC value, at this pH, compared to our original study. This difference may be 

attributed to a difference in experimental conditions. By adding two different test 
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compounds (Mb-Cu and surfactant), buffers were needed as the diluent for stock solutions 

and for replacing a compound when particular treatments did not require either Mb-Cu or a 

surfactant. The use of a buffered system may be responsible for this discrepancy because 

this was the only difference in experimental conditions. Methanobactin shares limited 

similarities with other biopreservatives that have been studied for use in controlling 

foodborne microorganisms. As previously mentioned, methanobactin is hypothesized to be 

an agent for copper sequestration and uptake in M. trichosporium OB3b, an analogous 

function of the iron-binding siderophores, produced by a vast number of microorganisms 

(16). Very few studies have used purified siderophores in known amounts to study their 

antimicrobial effectiveness. Those that have used cultures or undefined culture filtrates 

containing siderophores, have shown little effectiveness (10, 12). However, Manwar et al. 

(20) found satisfactory zones of inhibition on plates containing various plant-pathogenic 

fungi, when using paper disks soaked in cell-free filtrate, containing 0.24 mg/ml 

siderophore, produced by Pseudomonas aeruginosa. Bacteriocins are another class of 

compounds worth comparing to methanobactin due to the fact that they are also 

proteinaceous compounds produced by many bacteria; many of which have similar 

molecular weights. Benkerroum and Sandine (1) demonstrated that the MICs of nisin 

against L. monocytogenes strains ranged from 18.5 to 3000 gg/ml (740 to 120,000 IU/ml) 

on tryptic soy agar (TSA). This is fairly comparable, to some to degree, to the MIC of 

methanobactin, which was 2.06 mM (2500 gg/ml), however the methodologies differed. 

Pediocin PA-1 inhibited the growth of L. monocytogenes at 54.7 AU/ml (22), however, 
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initial inoculum concentrations were only ~103 cells/ml, which were over 1000-fold lower 

than the inoculum concentration used in this study. 

Researchers have used a variety of surfactants and other compounds to help lower 

antimicrobial concentrations needed to inhibit and/or destroy microorganisms. In the 

present study, we determined the impact of combining T20, T80, or SLS with 

methanobactin, on the fate of L. monocytogenes Scott A. Our data agrees with the well 

established notion that T20 and T80 have negligible effects on the survival of L. 

monocytogenes. Despite the absence of inhibitory action of T20 and T80 against L. 

monocytogenes reported in the present study, researchers have reported that these 

surfactants do have an effect on bacterial membrane lipid composition. Li et al. (19) 

demonstrated a T20-induced increase in the C15/C17 and anteiso/iso ratios of the membrane 

fatty acids of L. monocytogenes, indicating a lowering of membrane phase transition 

temperature. Lactococci grown in the presence of T80 were also shown to have decrease in 

C19 fatty acids accompanied by an increase of fatty with shorter chain lengths, indicating 

increased membrane fluidity (17). The present study clearly demonstrates that surfactants 

may have an antagonistic or synergistic effect on the activity of Mb-Cu, dependent upon 

surfactant type (i.e., nonionic versus acid anionic). Variable results have ensued from 

literature reporting the use of Tweens, in combination with antimicrobials. 

We report that T20 and T80 lower the antimicrobial activity of copper-bound 

methanobactin against L. monocytogenes Scott A. Studies conducted in food systems, 

demonstrating improved effectiveness of bacteriocin/Tween treatments, have attributed it to 

improved food surface wettability, removal of bacterial cells, and a reduction of non-
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specific binding that would otherwise result in less available bacteriocin amounts (2, 7, 24). 

In broth media, Li et al. (19) attributed the increase in nisin sensitivity of L. monocytogenes 

cells to T20-induced improved nisin-membrane binding efficiency where no changes in 

membrane fluidity were observed. Given what is known regarding membrane-induced 

changes attributed to T20 and T80, it is possible that nonionic surfactants may bind 

methanobactin rendering it unavailable for activity. For example, surfactants may form 

micelles in which solute molecules (i.e., Mb-Cu) may be solubilized within, thereby 

preventing the agent from interacting with bacterial cells. This was suggested when T20 

and T80 were shown to compromise the antimicrobial activity of essential oils, in vitro 

(11). It is also possible that nonionic surfactants may compete with Mb-Cu for the same 

site on the bacterial cell. T80 was more antagonistic to Mb-Cu activity in relation to T20. 

The only structural difference between these two compounds is the type of fatty acid ester 

they contain. T20 contains laurate (C12:0) while T80 contains oleate (C18:l). This 

structural difference may be responsible for differences in micellar formation and size, and 

resultant solubilization of Mb-Cu. 

SLS was shown to synergistically enhance the antimicrobial efficacy of Mb-Cu 

against L. monocytogenes. This surfactant is known to be more effective at lower pH, 

which our data agrees with. The mechanism of action is not well understood; however, the 

three most commonly cited hypotheses are: (i) general denaturation of proteins, (ii) 

inactivation of essential enzymes, and (iii) disruption of cell membranes, resulting in 

alterations in permeability (6). The bacterial outer membrane is known to be necessary for 

SLS resistance, but not entirely impervious to it (23), thus gram-negative bacteria are much 
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more resistant to the direct effects of SLS, compared to gram-positive bacteria. This was 

shown to be the case for L. monocytogenes, where 0.25 and 0.50% SLS reduced 

populations by 1.59-2.24 and 1.74-2.45 log-cycles, respectively, depending on pH. SLS 

has also been shown to increase the activity of organic acids against Salmonella 

Typhimurium on chicken broiler skins (27) and to enhance the antimicrobial activity of 

essential oils against S. Typhimurium and Escherichia coli 0157:H7 (73). 

Compared with neutral surfactants, like T20 and T80, SLS ionizes in solution to 

where the sulfate groups carry a negative charge. In addition, SLS are linear (straight 

alkane) in nature compared with the polyoxyethylene sorbitan monoesters. As a result of 

this, Mb-Cu/SLS interactions exhibit greater antimicrobial activity when compared with 

Tween surfactants. In fact, the combination of SLS and Mb-Cu may result in mixed 

micelle formation, in which micellar shells would be composed of both the solute (Mb-Cu) 

and the surfactant monomers (SLS). This would bring Mb-Cu closer to target sites on 

bacterial cells because the solute would be at the surface of the micelles. This may also 

increase the rate of Mb-Cu uptake by L. monocytogenes cells, followed by accelerated 

destabilization and loss of biological activity of the bacterial cytoplasmic membrane. 

Methanobactin, a natural bacterial-produced biopreservative, was shown to 

effectively destroy L. monocytogenes. The addition of SLS to the treatments permitted 

lowering Mb-Cu concentrations 2-fold or more, and still maintain high antilisterial activity. 

This is the first published work demonstrating increased antimicrobial effectiveness of 

methanobactin when used in combination with a surfactant. Methanobactin fulfills 

important physiological roles in the producer organism; setting this compound apart from 
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most other biopreservatives that are used to control foodborne pathogens in foods. More 

research is needed to determine the effect of Mb-Cu on other foodborne pathogens 

(including gram-negatives), and any potential allergenic issues. Information regarding the 

effects of temperature, cations, and food constituents would prove to be useful in 

determining potential food applications for methanobactin/SLS treatments. Given the fact 

that inoculum levels used in this study were unrealistically high for foods, the application of 

Mb-Cu/SLS in the form of a spray or dip, for various RTE meat products, may be a 

promising antimicrobial intervention for control of L. monocytogenes. 
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Table 1. "Minimum inhibitory concentrations (MICs) of methanobactin against L. 
monocytogenes Scott A as influenced by pH and surfactant. 

pH 

Tween 20 Tween 80 
Sodium Lauryl 

Sulfate 

pH 
No 

Surfactant 
0.25% 0.50% 0.25% 0.50% 0.25% 0.50% 

6.25 2.06 4.11 4.11 4.11 4.11 ND" ND 
6.00 2.06 2.06 4.11 4.11 4.11 ND ND 
5.75 2.06 2.06 2.06 2.06 4.11 ND ND 

aMIC expressed in millimoles (mM) 
hNot Determined 
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Figure 1. Final 24-h absorbance readings (595 nm) of L. monocytogenes Scott A cultures 
after exposure to Mb-Cu without surfactant (•), and in combination with 0.25% T20 (•), 
0.50% T20 (•), 0.25% T80 (A), or 0.50% T80 (A), in different pH conditions. 
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Figure 2. Growth of Z. monocytogenes Scott A, at 32°C and in different pH conditions, as 
measured by absorbance (595 nm) in the presence of sub-inhibitory concentrations of Mb-
Cu: 0 (•), 0.06 (O), 0.13 (•), 0.26 (•), 0.51 (A), and 1.03 (A) mM. 
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Figure 3. Viability of L. monocytogenes Scott A following exposure (24 h) to 
methanobactin, Tween 20, and their combination in different pH conditions, when 
enumerated on BHI agar. Values represent the means of at least three replicates ± SD (error 
bars). Letters indicate significant differences (P<0.05) between treatment means within a 
given pH value. 
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Figure 4. Viability of L. monocytogenes Scott A following exposure (24 h) to 
methanobactin, Tween 80, and their combination in different pH conditions, when 
enumerated on BHI agar. Values represent the means of at least three replicates ± SD (error 
bars). Letters indicate significant differences (P0.05) between treatment means within a 
given pH value. 
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Figure 5. Viability of L. monocytogenes Scott A following exposure (24 h) to 
methanobactin, sodium lauryl sulfate, and their combination in different pH conditions, 
when enumerated on BHI agar. Values represent the means of at least three replicates ± SD 
(error bars). Letters indicate significant differences (P<0.05) between treatment means 
within a given pH value. 
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CHAPTER 5. EFFICACY OF METHANOBACTIN ALONE OR 
COMBINED WITH SODIUM LAURYL SULFATE AS A SURFACE 

TREATMENT FOR THE CONTROL OF LISTERIA 
MONOCYTOGENES ON FRANKFURTERS MADE WITH OR 

WITHOUT SODIUM LACTATE 

A paper to be submitted to the Journal of Food Protection 

Clinton L. Johnson1, Aubrey F. Mendonca1*, James S. Dickson2, 
Anthony L. Pometto III1, and Alan A. DiSpirito3 

ABSTRACT 

Methanobactin, a "chalkophore" produced by methanotrophic bacteria has been previously 

shown to possess listericidal properties in vitro. The objectives of this study were to 

determine the effect of copper-bound methanobactin (Mb-Cu; 10 mM), sodium lauryl 

sulfate (SLS; 1%), and their combination on the survival of a 5-strain Listeria 

monocytogenes cocktail (-6.30 log CFU/frankfurter) and spoilage organisms, on vacuum-

packaged frankfurters formulated with or without 2% sodium lactate (NaL). Frankfurter 

samples (1 frankfurter/bag) were uniformly surface-treated, inoculated, vacuum-packaged, 

and stored at 4 and 10°C, for 84 and 56 days, respectively. Periodically, each sample was 

rinsed using 0.1% peptone (20 ml). The rinse solution was serially-diluted, and 
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surface-plated onto Modified Oxford (MOX; L. monocytogenes), tryptic soy agar 

supplemented with 0.6% yeast extract (TSAYE; total counts), and acidified Lactobacillus 

MRS agar (MRS; lactic acid bacteria). After 24-h storage, 10 mM Mb-Cu, 1% SLS, and 

1% SLS +10 mM Mb-Cu treatments reduced initial L. monocytogenes populations by 0.92-

1.11, 0.93-1.70, and 1.91-2.66 log-cycles, respectively, with slightly greater reductions 

occurring on NaL-containing frankfurters. Surface treatments had little effect on lactic acid 

bacteria but extended the lag of the pathogen in the presence of NaL (P<0.05). Complete 

inhibition of the pathogen was not achieved for the length of storage at either temperature. 

On frankfurters formulated with NaL, final L. monocytogenes counts were not statistically 

higher (P<0.05) than initial populations using any treatment at 4°C. Based on these results, 

a combination of Mb-Cu (10 mM) and 1% SLS exhibits moderate inhibitory activity 

against L. monocytogenes on frankfurters. Further research is needed to optimize the use of 

Mb-Cu for control of L. monocytogenes in RTE meats. 

INTRODUCTION 

Consumption of ready-to-eat (RTE) meats, including poultry deli meats and frankfurters 

have been implicated in major multi-state listeriosis outbreaks, resulting in a significant 

number of deaths (-20% case fatality rate). Due to the nature of these meat products, they 

are at a particular high risk for contamination by Listeria monocytogenes. Normal 

frankfurter processing conditions have been shown to be sufficient to eliminate the 

pathogen from the finished product (61); however, there is no consumer safety intervention 

guarantee because frankfurters may be consumed without cooking or reheating. This risk is 
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imminent because post-processing contamination can likely occur during peeling of the 

casings and before packaging of the product (44). L. monocytogenes is a particular problem 

in these cured RTE meat products because, in general, it can grow to high numbers despite 

refrigerated storage, the presence of sodium chloride and nitrite salts, and the absence of 

atmospheric oxygen when vacuum-packaged (37). Also, the pH of these meat products 

(-5.8 to 6.2) is not sufficiently low enough to suppress growth despite the presence of these 

other aforementioned hurdles, nor has the natural spoilage microflora shown to play a major 

role in retarding the growth ofZ. monocytogenes (48). 

In addition to this hardy organism's ability to proliferate on a number of foods, its 

persistence in the processing environment is most troubling due to its widespread 

distribution in nature (56). This, along with the uncertain infective dose and high fatality 

associated with listeriosis, led the U.S. Department of Agriculture Food Safety and 

Inspection Service (USDA-FSIS) to establish a "zero-tolerance" policy for its presence in 

RTE meat products. In 2003, the USDA-FSIS established an interim final rule (21), 

mandating food processors to choose from three alternatives, which has encouraged food 

processors to implement a postlethality treatment(s) to reduce or eliminate L. 

monocytogenes, and/or antimicrobial agents or processes to limit or suppress the growth of 

the pathogen throughout the shelf life of the product. 

The salts of a variety of organic acids, namely lactates and diacetates, and their 

combinations have been studied extensively for use in batch formulations of frankfurters 

and other RTE meats, to control the growth ofZ,. monocytogenes in the event of post-

process contamination (2, 3, 25, 43, 46, 51, 52). A number of studies have also shown 
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potential effectiveness of post-process antimicrobial dipping or spraying solutions 

composed of organic acids or their salts to prevent the growth of the pathogen as well, 

although this practice is not commonly used in industrial food processing (2, 23, 25, 38, 43, 

44). Most research indicate that in general there are minimal negative sensory changes 

associated with the formulation or surface treatment with these antimicrobials when used at 

levels to help control L. monocytogenes in frankfurters (2, 7, 23, 39). Although many 

organic acids are produced by natural means, there are a number of other less commonly 

investigated compounds that are produced naturally by plants, animals, and 

microorganisms, that may have good potential for controlling L. monocytogenes in RTE 

meat products. The consuming public has shown a demand favoring foods that are 

minimally processed or that are produced to include more natural food safety measures. 

This has been followed by increased research interest in a variety of natural compounds that 

can be used as surface treatments of meats by way of package incorporation, films, dips, 

and sprays, among others. 

Spices (59) and their essential oils (22, 62), sorbates (40, 49), and other extracts (1, 

36, 41) are among the most frequently studied plant-derived antimicrobials for use in/on 

meats. Antimicrobial compounds from animal sources have included lactoferrin (42), 

lysozyme (24, 47), chitosan (62), and components of the lactoperoxidase system (18). 

Natural antimicrobials derived from microorganisms, for use in/on meat products have been 

studied extensively as well. These include protective cultures (7, 28), bacteriocins (9, 40, 

58) other compounds (35, 54, 57), and less commonly siderophores (10). Many of these 

antimicrobials may possess suitable activity for the incorporation into surface treatment -
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food preservations systems for RTE meats and may have an advantage of bearing a gentler 

name, as opposed to "acid". 

Hurdle technology is a well-established concept used by combining different 

antimicrobials at lower levels to improve overall performance of food preservation systems. 

These may include the utilization of antimicrobial adjuvants for improving the efficacy, 

delivery, and distribution of the antimicrobials when applied as surface treatments on meat 

products, or for preventing the attachment of microorganisms on their surfaces. Some of 

these include surfactants and emulsifiers (17, 53), antioxidants and metal chelators (14, 50), 

and fatty acids (16, 27). 

Previous work in our laboratory has demonstrated that methanobactin (Mb-Cu), a 

novel chromopeptide naturally-produced by the methane-oxidizing bacterium Methylosinus 

trichosporium OB3b has listericidal properties, in vitro. This organism is important for 

global carbon cycling and has been studied for its use in single-cell protein (SCP) 

production. In addition, studies in our laboratory have shown that sodium lauryl sulfate 

(SLS) has good potential to help control the growth of L. monocytogenes on frankfurters. 

SLS is approved for food use as: an emulsifier for eggs, whipping agent in marshmallows, 

surfactant in fumarate-acidulated beverages, and wetting agent in edible fats and oils (15). 

Recently we observed in vitro synergistic, bactericidal activity when SLS and Mb-Cu are 

used in combination against L. monocytogenes, at pH values typical of RTE meats. 

Therefore the objectives of this study were: (1) Determine the initial reductions of L. 

monocytogenes on frankfurters (formulated with or without 2% sodium lactate) using 

surface treatments composed of SLS, Mb-Cu, or their combination; (2) Monitor the 
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behavior of L. monocytogenes and normal spoilage flora, on treated, vacuum-packaged 

frankfurters during extended storage at 4 or 10°C; and (3) Determine the impact of 

frankfurter formulation on the effectiveness of the surface treatments. Biophysical and 

structure characterization of this biopreservative has been recently performed (33, 34), and 

this is the first report of Mb-Cu efficacy against L. monocytogenes in a food system. 

MATERIALS AND METHODS 

Bacterial strains and inoculum preparation. A 5-strain composite of L. 

monocytogenes was used in this study that included Scott A (serotype 4b, human isolate), 

101M (serotype 4b, beef and pork sausage isolate), 108M (l/2b, hard salami isolate), F6854 

(serotype l/2a, frankfurter isolate), and H7776 (serotype 4b, frankfurter isolate). With the 

exception of L. monocytogenes Scott A, which was obtained from the National Animal 

Disease Center, Agricultural Research Service (United States Department of Agriculture, 

Ames, LA), all strains were obtained from the Illinois Institute of Technology (Chicago, IL). 

Prior to the experiments, L. monocytogenes cultures were confirmed by streaking onto 

Modified Oxford (MOX) agar, followed by gram-staining, oxidase and catalase tests, and 

API test kit verification. Cultures were maintained as frozen (-20°C) stock in tryptic soy 

broth (Difco, Becton Dickinson and Co., Franklin Lakes, NJ) supplemented with 0.6% 

(wt/vol) yeast extract (Difco; TSBYE) and 10% (vol/vol) glycerol. Prior to each 

experiment, the stock cultures were transferred twice in 10 ml of TSBYE and incubated at 

32°C for 18-24 h. Overnight cultures were combined by transfer (6-ml aliquots) into a 

sterile centrifuge tube, then harvested by centrifugation (10,000 x g, 10 min) in a 
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refrigerated (4°C) centrifuge (Sorvall Super T21; DuPont Instruments, Wilmington, DE). 

The cells were washed once in 0.85% (wt/vol) NaCl, harvested by centrifugation, and 

resuspended in fresh saline. The washed cell suspension was then diluted 100-fold in order 

to obtain ~107 CFU/ml, which served as the experimental inoculum (-6.30 log 

CFU/frankfurter). The inoculum population was determined by surface-plating onto tryptic 

soy agar (Difco) supplemented with 0.6% (wt/vol) yeast extract (Difco; TSAYE) and 

enumerationed after incubation at 32°C for 48h. 

Frankfurter preparation. Frankfurters were prepared with pork fat trimmings 

(40/60 lean/fat ratio) and lean beef trimmings (80/20 lean/fat ratio) at the Iowa State 

University Meat Laboratory. The meat was ground through a 0.79-cm grinder plate, and 

divided into two batches. One batch received sodium lactate (NaL), as a powder (Purac 

Inc., Lincolnshire, IL), added along with salt, sodium erythrobate, sodium nitrite, seasoning 

and water with ice during emulsification in a vacuum chopper to achieve a final 

concentration of 2% in the product (Kutter Supplies, Inc., Randolph, MA.). The other batch 

served as a control, and was prepared the same way as the first one, without the 

incorporation of NaL. The meat batters were extruded through a meat stuffer (Risco® 

Model RS 4003-165; Stoughton, MA) into 22-mm peelable cellulose casings (Devro 

Teepack™ Wiene-Pack®; Coastal Corrugated Inc., N. Charleston, SC). The encased meat 

batters were linked at 14.0-cm lengths by 2.2 cm in diameter, using a poly-clip system 

(GmbH and Co. KG, Frankfurt, Germany). 



www.manaraa.com

143 

The linked products were hung on racks and cooked for 90 minutes using the 

conventional cooking-smoking cycle in a humidity-controlled smoke house (Alkar, DEC 

Intl. Inc., Lodi, WI) to an internal temperature of 71.1 °C. Natural smoke (hardwood 

sawdust; Frantz Co., Milwaukee, WI) was applied during the cooking cycle. At the end of 

the cycle, frankfurters were showered with cool water, and then held in a walk-in 

refrigerator at 4.0°C for 18-19 hours. The following day, frankfurters were peeled (2600 

High Speed Peeler; Townsend, Des Moines, IA), sealed in vacuum bags (10/package), and 

stored at -20°C until experimental use. Finished weight of the frankfurters was 34.8 ± 2.1 g 

per link. 

Methanobactin preparation. Lyophilized copper-bound methanobactin (Mb-Cu) 

samples (referred to as methanobactin throughout this paper) were prepared using a 

modified protocol previously described by Choi et al. (12). Mb-Cu samples (12 mg) were 

transferred to 1.5-ml polystyrene microcentrifuge tubes (Eppendorf, Westbury, NY), placed 

in Seward stomacher bags (Seward Ltd., London, England), and held on ice for one hour 

prior to irradiation. Samples were sterilized via electron-beam irradiation at the Iowa State 

University Linear Accelerator Facility, which has a MeV CIRCE III Linear Electron 

Accelerator (MeV Industrie S. A., Jouy-en-Josas, France). Samples were irradiated at >30 

kGy in the electron beam mode at an energy level of 10 MeV and an average dose rate of 

58 kGy/min. Absorbed radiation doses were determined by the use of 5 (diameter) by 5 

mm (length) dosimeter alanine pellets (Bruker Analytische Messtechnik, Rheinstetten, 

Germany) placed on the top and bottom surfaces of one stomacher bag containing Mb-Cu 
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samples. Immediately after irradiation, the pellets were placed in a Broker EMS 104 EPR 

Analyzer to measure absorbed doses by electron paramagnetic resonance. The average 

absorbed dose was obtained from the arithmetic average of the top and bottom surface 

readings. Sterile samples were stored -20°C and held for no longer than 2 months. 

Application of treatments. Prior to inoculation, frankfurters were treated as 

follows: (i) no treatment (control), (ii) 10 mM Mb-Cu, (iii) 1% (wt/vol) SLS (Sigma, St. 

Louis, MO), or (iv) 1% SLS + 10 mM Mb-Cu. 

Frozen frankfurters of both formulations were thawed overnight at 4°C in a walk-in 

refrigerator. After thawing, each frankfurter was aseptically removed from the bulk 

packages and placed into a vacuum bag (1 frank per bag; Cryovac B-2540, Cryovac Sealed 

Air Corp., Duncan, SC; water vapor transmission=0.5-0.6g at 100°F, 100% RH/100 

in2/24h; oxygen transmission rate=36 CC at 40°F/m2/24h/0% RH). The packages were 

separated according to formulation, held at 4°C until treatment addition, and randomly 

assigned to treatment. Two portions of Mb-Cu were aseptically weighed out and dissolved 

in either sterile water or 1% SLS to yield 10 mM concentrations for treatment use. 

Preliminary studies indicated that when frankfurters were dipped for 2 minutes, the average 

pickup was 0.42 ± 0.03 g per frank, or approximately 0.012% total pickup of the 

compounds or their combinations by the frankfurters. Based on the established pickup, 0.4 

ml of the treatments were spot-inoculated onto the frankfurters, using a pipette. After the 

treatment application, the frankfurters were massaged manually from outside of the bag for 

5-10 seconds to uniformly distribute the treatment over the surface. Control frankfurters 
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did not receive the addition of any treatment. Inoculation of the treated and control 

frankfurters followed within 30 minutes. 

Inoculation and frankfurter packaging. After the addition of the treatments, each 

frankfurter was spot-inoculated with 0.2 ml of the 5-strain cocktail of L. monocytogenes 

using a pipette, then massaged manually from the outside of the bag for 5-10 seconds to 

spread the inoculum over the surface. Inoculated samples were vacuum-packaged using a 

Multivac A 300/51/52 vacuum-packaging machine (Multivac Sepp Haggenmuller GmbH & 

Co. KG, Wolfertschwenden, Germany). One half of the prepared samples were stored at 

4°C and the other half were stored at 10°C. 

Frankfurter pH measurement. The frankfurters were measured for pH prior to 

treatment and inoculation, after treatment and prior to inoculation, and on the final day of 

storage for each storage temperature. A model 410Aplus (Thermo Orion; Thermo Electron 

Corp., Beverly, MA) benchtop pH/temperature meter equipped with a flat surface 

combination pH electrode was used by applying the electrode to the surface near one end of 

the frankfurter (29). 

Microbiological analyses. Vacuum-packaged frankfurter samples were opened 

aseptically and rinsed with 20 ml of 0.1% sterile peptone water (Difco), then vigorously 

massaged by hand from outside of the package for 30 seconds. Ten-fold serial dilutions of 

the rinsate were prepared in 0.1% peptone water and aliquots of appropriate dilutions were 
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surface-plated (in duplicate) onto MOX agar, TSAYE, and Lactobacillus MRS agar (pH 

5.2) acidified with 0.16% (vol/vol) acetic acid. MOX agar was used to enumerate L. 

monocytogenes, TSAYE was used to estimate the total microbial population on the 

frankfurters, and acidified MRS (MRS) was used to enumerate lactic acid bacteria (LAB), 

the predominate spoilage flora of this meat product. Colonies were counted after 

incubation for 72 h at 32°C (MOX) or 30°C (TSAYE and MRS). 

The initial microbial load of the products were determined using the aforementioned 

media. Vacuum-packaged frankfurters stored at 10°C were sampled on days 1, 7,14,28, 

and 56, while frankfurters at 4°C were sampled after 1, 7,14, 28, and 84 days of storage. 

Data analysis. Four surface treatments (control, 10 mM Mb-Cu, 1% SLS, or 1% 

SLS + 10 mM Mb-Cu), two frankfurter formulations (0 and 2% NaL), two storage 

temperatures (4 and 10°C), and six sampling times (0, 1,7,14,28, and 56 or 84 d) were 

used in the present study. A randomized complete-block experimental design was used, all 

experiments were repeated at least twice, and the microbiological counts (logio CFU/frank) 

and pH measurements are reported as means. Analysis of variance was used to determine 

significant differences among mean values following the Tukey-Kramer adjustment. 

Differences were considered statistically significant when the associated P-value was less 

than 0.05. 
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RESULTS 

Initial microbial load of frankfurters and L. monocytogenes recovery. L. 

monocytogenes was not detected (<1.30 log CFU/frank) on frankfurters of either 

formulation, as determined by directly plating the rinsate onto MOX agar. Furthermore, the 

overall microbiological quality of the finished products was very high and no difference in 

the initial microbial load was found between the two frankfurter formulations. Populations 

did not exceed 1.40 and 1.30 log CFU/frank on TSAYE and MRS, respectively. The 

recovery method used for the enumeration of L. monocytogenes on frankfurters was very 

similar to the United States Department of Agriculture - Agricultural Research Service 

(USDA - ARS) package rinse method. It proved to be very reliable (Figure 1) where 

average loss of the inoculum (6.24 log CFU/frank) was -0.07 and 0.12 log CFU/frank for 0 

and 2% NaL franks on MOX agar, and -0.04 and 0.23 log CFU/frank for 0 and 2% NaL 

franks on TSAYE, respectively. Recovery loss was only found on frankfurters formulated 

with 2% NaL. Losses did not exceed 0.36 log CFU/frank in any instance. 

Effect of antimicrobial surface treatments on initial L. monocytogenes 

populations. As mentioned, the initial flora on TSAYE and MRS were very low, thus the 

counts obtained for initial reductions on the former media were entirely composed of L. 

monocytogenes colonies, while LAB populations being below the detection limit prevented 

quantitation on the latter. The initial 24-h reductions of L. monocytogenes on frankfurters 

is depicted in Figure 1. Counts were slightly lower on MOX than TSAYE when derived 

from frankfurters formulated with 2% NaL, while this was not true for the other 
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formulation. Although consistent, differences between media were considered negligible. 

Temperature was not found to be a major factor during the first 24 h of storage either, 

despite slightly larger reductions ofZ. monocytogenes at 10 than 4°C, on frankfurters 

formulated with 2% NaL. 

Counts on MOX revealed that 24-h reductions of L. monocytogenes on frankfurters 

formulated without NaL and stored at 4°C, were 0.92-, 0.99-, and 1.99-log CPU/frankfurter 

treated with 10 mM Mb-Cu, 1% SLS, and 1% SLS + 10 mM Mb-Cu, respectively. 

Reductions by these treatments after storage at 10°C were 0.99,0.93, and 1.91 log-cycles, 

respectively. Thus the two antimicrobials, when used alone, gave similar reductions 

(P>0.05) for this formulation, while a combination of the two antimicrobials resulted in a 

greater, additive effect (P<0.05). Counts on TSAYE were similar and all three treatments 

were significantly different (P<0.05) from the control, at both temperatures, when 

determined on either media. Reductions (MOX) of L. monocytogenes on frankfurters 

formulated with 2% NaL at 4°C were 1.11, 1.45, and 2.66 log-cycles for 10 mM Mb-Cu, 

1% SLS, and 1% SLS + 10 mM Mb-Cu, respectively. At 10°C, these treatments gave 1.10, 

1.70, and 2.63 log reductions, respectively. Counts on TSAYE were similar, and all 

treatments significantly reduced (P<0.05) L. monocytogenes populations (MOX). 

Reductions were consistently higher, on frankfurters formulated with 2% NaL than 

without, regardless of storage temperature or media type, however these differences were 

not statistically significant (P>0.05). In contrast to the reductions on frankfurters 

formulated without NaL, 1% SLS resulted in a higher reductions than 10 mM Mb-Cu when 

used alone on 2% NaL -frankfurters. However, this observation was also not statistically 
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significant (P>0.05). This was observed for both storage temperatures, with the 

antimicrobial combination being the best treatment (P<0.05) displaying an additive effect. 

Despite the lack of significance, collectively, these results may demonstrate that the 

treatments exhibit slightly greater listericidal activity in the presence of 2% NaL, however 

this appears to be only an additive effect similar to combining the two single surface 

treatment antimicrobials. Overall, the combinational antimicrobial surface treatment, along 

with NaL in the formulation and stored at 10°C, gave the best initial reductions. 

Effect of antimicrobial formulation and surface treatments on the survival and 

growth of L. monocytogenes and background flora during storage. When determined 

by plating on MOX, L. monocytogenes grew well on untreated frankfurters formulated 

without NaL during storage at 4°C (Figure 2). The lag phase was less than 7 days and 

outgrowth (or maximum population) occurred within 28 days, whereas 2% NaL extended 

the lag phase to around 14 days (P<0.05) resulting in a final L. monocytogenes population 

(day 84) that was 1.13 log CFU/frank less than on frankfurters without NaL. On 

frankfurters without NaL, the lag phase and growth rates seemed to be unaffected by the 

surface treatments. In contrast, the lag phase of L. monocytogenes was extended by at least 

14 days (day 28) with any of the three surface treatments compared to the control on 

frankfurters formulated with 2% NaL (P<0.05). The order of increasing effectiveness for 

initial lethality (Control <10 mM Mb-Cu <1% SLS <1% SLS + 10 mM Mb-Cu) remained 

consistent during early storage, however, at the end of the storage period at 4°C, surface-

treated, 2% NaL-frankfurters had L. monocytogenes counts between 6.08 and 6.59 log 
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CFU/frank. Although the counts for these treatments were not statistically different 

(P>0.05) than the initial inoculum population, L. monocytogenes grew between 1.24 and 

2.50 logs depending on treatment, following the initial reductions. Interestingly, 10 mM 

Mb-Cu alone on 2%-NaL frankfurters (4°C) seemed to inhibit L. monocytogenes better than 

1% SLS alone (P<0.05), which is the reverse for that of the initial lethality, however this 

could be misleading since additional sampling times between days 28 and 84 would be 

needed to confirm this. 

Total counts on TSAYE from frankfurter samples stored at 4°C were almost entirely 

L. monocytogenes until day 14 (Figure 3) when compared to the MOX data, however on 

day 14, TSAYE counts additively resembled those on MOX and MRS. TSAYE counts 

beyond day 14 resembled those on MRS (Figure 4) and thus were primarily LAB, the 

predominant spoilage organism of this meat product. Overall, the treatment effects when 

determined by plating on TSAYE were similar to the MOX data during early storage but 

eventually resembled the MRS data. Figure 4 shows that although MRS counts were 

typically lower (0.75-1.5 logs) on surface-treated frankfurters (without NaL) than the 

control, LAB grew rapidly and final populations were similar when stored at 4°C. LAB 

were not able to grow as rapidly on frankfurters formulated with 2% NaL. The lag phase 

was almost 7 days for the control group and MRS counts on frankfurters formulated with 

2% NaL were nearly 2 logs lower than on frankfurters without NaL, at 28 days of storage; 

however populations were similar at the end of storage. Treatment order of inhibition 

effectiveness on LAB was the same between frankfurter formulations. On average LAB 

populations on 2% NaL-containing treated samples were 0.5 to almost 3 logs lower than on 
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control frankfurters through day 28. The combinational treatment on these frankfurters 

seemed to extend the shelf life of the product by approximately 1 week (through 

extrapolation of the curves) and counts were significantly different (P<0.05) than the 

control at day 14. 

During storage at 10°C (Figure 5), L. monocytogenes (MOX) grew very rapidly on 

untreated frankfurters formulated without NaL, while growth was slowed somewhat by the 

incorporation of NaL into the formulation (P<0.05). Outgrowth occurred on samples of 

either formulation within 14 days, however, populations on frankfurters formulated with 

2% NaL were always at least 1.5 logs lower than those on frankfurters formulated without 

NaL (P>0.05). Treatment effects on the inhibition of L. monocytogenes at 10°C were 

similar to the results at 4°C-storage. On frankfurters formulated with 2% NaL, initial 

reductions caused by 1% SLS alone were greater than using 10 mM Mb-Cu alone. 

However, although not significant (P>0.05), 10 mM Mb-Cu and the combinational 

treatment seemed to extend the lag phase at least 7 days longer (until day 14) than 1% SLS 

alone. This trend was more pronounced at this storage temperature than at 4°C. At 10°C, 

populations were similar at the end of storage even though the surface-treated 2%-NaL 

frankfurters generally had lower L. monocytogenes counts. On frankfurters without NaL, 

growth rates were unaffected and populations at the end of storage (56 days) were similar 

regardless of treatment. 

Trends in microbial growth on TSAYE (Figure 6) were similar to those observed on 

MOX for all treatments, especially through 7 days of storage at 10°C, suggesting counts 

were almost entirely L. monocytogenes. The higher counts obtained on TSAYE, following 
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early storage reflect LAB populations as determined by plating on MRS. On frankfurters 

formulated without NaL LAB populations (Figure 7) grew very rapidly at 10°C despite the 

application of the antimicrobial surface treatments. After 14 days of storage and depending 

on treatment, populations were between 8.19 and 8.65 log CFU/frank, while counts were 

between 5.66 and 7.06 log CFU/frank when 2% NaL was included in the formulation. It 

appears that 2% NaL slightly increased the shelf life of the frankfurters at this temperature, 

especially when 1% SLS + 10 mM Mb-Cu was used. Overall, LAB grew much faster at 

this storage temperature compared to 4°C-storage, regardless of surface treatment. 

Effect of treatments on the initial and final product pH. Figure 8 displays the 

surface pH values of the initial products, after surface treatments, and following storage at 

4°C for 84 days or 10°C for 56 days. The initial pH of frankfurters formulated with 2% 

NaL (pH 5.94) and without NaL (pH 5.95) were nearly identical, and the surface treatments 

had negligible effects (P>0.05) on these values. Overall, pH values were higher on 

frankfurters formulated with 2% NaL than without, and lower storage temperature gave 

higher pH values than the higher storage temperature. There were no significant 

differences between final product pH of control and surface-treated frankfurters at either 

storage temperature or formulation. 

DISCUSSION 

The results of this study demonstrate that when used alone, Mb-Cu (10 mM) 

provides low bactericidal (~1 log reduction) and residual bacteriostatic activity against L. 
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vitro work within our laboratory demonstrated a concentration of 2.06 mM Mb-Cu in brain 

heart infusion (BHI) broth could generate a >5.00 log reduction, while as low as 125 uM 

Mb-Cu, in buffer, could reduce populations of L. monocytogenes Scott A by 4 log-cycles 

within 2 hours. The latter result involved a concentration 80 times less than that used in 

this study demonstrating that there is likely severe loss of Mb-Cu activity in this food 

product. In broth media, the bactericidal activity of Mb-Cu was considered to be an "all-or-

nothing" event; however, death kinetics in buffer revealed dose-dependent behavior over a 

very narrow range. This result is difficult to explain in relation to the initial reductions of 

the present study. The obvious conclusion would be that loss in activity could be explained 

by non-specific binding of Mb-Cu to the food product, thus rendering it unavailable for 

activity against the pathogen. This, in theory, would lower the concentration of the 

antimicrobial to which L. monocytogenes is actually exposed. However, this previous work 

indicates that no reduction would be possible at concentrations below the minimum 

inhibitory concentration (MIC), unless, dose-dependent killing kinetics were not detected 

(as they were in buffer) because the range at which it is displayed is so narrow. In other 

words, a small reduction as in this study (1 log-cycle) could not be demonstrated in vitro, 

regardless of Mb-Cu concentration. Incompatibility of Mb-Cu on this food product may be 

further explained by our preliminary studies on frankfurters. Mb-Cu concentrations up to 

50 mM did not provide additional lethality of L. monocytogenes, as well as this 

concentration being well beyond the solubility of this compound in water (data not shown). 

This RTE meat product was selected because optimal Mb-Cu activity fell within the pH 
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range of this product; however, there are a number of intrinsic factors and food constituents 

that may affect the activity of antimicrobials, particularly ones that are peptides or proteins. 

Food lipids may reduce activity of an antimicrobial if it is hydrophobic or possesses 

hydrophobic components. Nisin, for example, is known to partition into the lipid phase of a 

food product, thereby reducing its activity. Studies in fluid milk revealed that as the fat 

content increased, higher concentrations of nisin were needed for effectiveness (5, 31). The 

structure of Mb-Cu (34) may indicate some hydrophobic character when copper - bound, 

especially with its modest solubility in water. The presence of NaCl (1.75% in our 

products) has been shown to antagonize the activity of lactoferricin (60) and nisin (4, 8); 

however there have been reports of it enhancing nisin activity (45, 55). Chloride and 

phosphate salts have also been shown to drastically reduce adsorption of Pediocin AcH 

onto the cell surface of target cells in vitro (6). With the vast distribution of the overall 

charge of the proteinaceous lantibiotic bacteriocins alone, ranging from highly positive to 

slightly negative (30), and the uncertainty of the net charge of copper-containing 

methanobactin in solution, it is not known whether this could be a major factor of Mb-Cu 

antimicrobial activity. The role of methanobactin in methanotrophic bacteria is likely that 

of extracellular copper - sequestration and/or detoxification, copper delivery, and 

interaction with respiratory enzymes (11, 13, 34). The proteinaceous nature of enzymes 

may indicate a natural tendency for Mb-Cu to non - specifically bind to proteins within the 

food product, thereby reducing antimicrobial efficacy. The presence of four other L. 

monocytogenes strains used in this study could also significantly alter the effectiveness of 

this antimicrobial since L. monocytogenes Scott A was the only strain selected for previous 
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in vitro studies. It is well established for many physical processing methods and 

antimicrobials, also including bacteriocins (19, 32), that L. monocytogenes strains can vary 

greatly in susceptibility. Product storage temperature, atmospheric conditions, and the high 

inoculum concentration (compared to likely contamination levels during processing) used 

in this study may also negate favorable antimicrobial action against L. monocytogenes. 

Inclusion of SLS into the surface treatment additively improved reductions of L. 

monocytogenes by ~1 to 1.5 log-cycles, when combined with Mb-Cu. This is consistent 

with many studies where the use of SLS has improved initial reductions of pathogens on the 

surfaces of meats. A patent issued to Hill and Ivey in 1988 involves the use of poultry 

carcass surface washes where the solutions contained SLS for improved effectiveness. 

Tamblyn and Conner (53) found similar results. Delivery of essential oils (22), nisin (5, 

31), and other bacteriocins (20) can be improved by encapsulation with nonionic 

surfactants. SLS, when used on this food product, does not seem to have the benefit of 

encapsulating the antimicrobial for improved delivery to target cells because initial 

reductions caused by SLS alone only adds to the reductions caused by Mb-Cu alone, when 

the two are combined. This is contrary to in vitro work showing more synergistic behavior. 

Slightly larger initial reductions were accomplished on frankfurters formulated with 

2% NaL than without. This was most apparent when the combinational treatment was used, 

but SLS showed improved activity against L. monocytogenes compared with Mb-Cu on 

2%-NaL frankfurters or SLS on frankfurters formulated without NaL. This may simply be 

a result of adding yet another hurdle for the pathogen to overcome in order to survive on the 

product. In this study formulating frankfurters with 2% NaL could not completely suppress 
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the length of the recommended commercial shelf life of ~90 days. This is in agreement 

with most literature, which indicates that >2% lactate alone is needed to reliably inhibit the 

growth of this pathogen on frankfurters for this length of time (3, 25, 43, 51, 52). It is 

worth noting that some of these studies show inhibition using 2% lactate for a major portion 

of the 3-month storage periods. This may indicate that this concentration borders on the 

threshold of complete inhibitory action because some studies have shown this formulation 

concentration to be sufficient (46, unpublished work in our lab). The implementation of 

this antimicrobial system would be sufficient to qualify for Alternative 1 as stipulated by 

USDA-FSIS (21), because 2% NaL will "limit" the growth of the pathogen. 

Consistent with previous findings (52), formulating frankfurters with 2% NaL had 

little affect on the growth of LAB, thus the shelf-life of the product could not be extended 

from a quality standpoint by these means. Decrease in surface pH of the products was 

likely due to the growth of LAB. While some treatments resulted in higher pH values than 

others, this could not necessarily be attributed to final LAB populations on the product, but 

may be due to surface treatment- or NaL-induced extended lag of LAB, possibly lowering 

final acid concentrations on the product. Porto et al. (46) showed similar findings. 

Collectively, the results of this study demonstrated that this anti-listerial system for 

use on frankfurters may be suitable on the basis of realistic contamination levels of 

frankfurters during processing. However, due to high concentrations of Mb-Cu needed to 

have a modest effect on L. monocytogenes, it seems evident that this product is not likely 

the best application for this system, possibly due to interference with food constituents 
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found in cured RTE meat products. However, determining an improved delivery system for 

this product (i.e. screening other surfactants) is worth considering. Susceptibility of other 

foodborne pathogens (such as gram-negatives) to Mb-Cu with the use of outer-membrane 

destabilizing agents, needs to be determined. Establishing the in vitro effects of selected 

fatty acids, salts, proteins, and other food components on Mb-Cu activity against L. 

monocytogenes may also help elucidate a more appropriate food product for its use, such as 

cheese and dairy products, vegetables or other products that have been associated with L. 

monocytogenes contamination. Finally, studies are needed to determine the overall safety 

of Mb-Cu, as well. With the vast amount of work remaining to answer the aforementioned 

questions, the use of Mb-Cu in foods to control the presence of L. monocytogenes shows 

promise. 
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Figure 1. The effect of surface treatments on the initial reduction of L. monocytogenes on 
frankfurters formulated with and without 2% NaL, after storage for 24 h at 4 and 10°C. 
Values represent the means of at least three replicates ± SD (error bars) as determined by 
plating onto MOX and TSAYE. Letters indicate significant differences (P<0.05) between 
treatment means within a given storage temperature grouping. 
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Figure 2. Mean populations ofZ. monocytogenes (MOX) on the surface of frankfurters 
without or with 2% sodium lactate in the formulation, during storage at 4°C. Samples were 
left untreated (•) or were surface-treated with 10 mM Mb-Cu (•), 1% SLS (A), or 1% 
SLS + 10 mM Mb-Cu (X), inoculated withL. monocytogenes (-6.3 log CFU/frank), then 
vacuum-packaged. 
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Figure 3. Mean total microbial populations (TSAYE) on the surface of frankfurters 
without or with 2% sodium lactate in the formulation, during storage at 4°C. Samples were 
left untreated (•) or were surface-treated with 10 mM Mb-Cu (•), 1% SLS (A), or 1% 
SLS + 10 mM Mb-Cu (X), inoculated withL. monocytogenes (-6.3 log CFU/frank), then 
vacuum-packaged. 



www.manaraa.com

161 

1 
u 

S 

10 

9 

8 

7 

6 

5 

r 
# 3 

2 

1 

10 

9 

8 

7 

6 

5 

without 
; NaL 

//fix 
/-'".y 
/ / // 

/// 
/ if 
/ / / 

/ / J! 

0 14 28 42 
Time (days) 

56 

1 

70 

« \ 

84 

I 
i 
I 

! 4 

m 3 

2 

2% NaL 

a 

-i 1— 
14 

—i— 
28 42 

Time (days) 

56 70 84 

Figure 4. Mean LAB populations (MRS) on the surface of frankfurters without or with 2% 
sodium lactate in the formulation, during storage at 4°C. Samples were left untreated (•) 
or were surface-treated with 10 mM Mb-Cu (•), 1% SLS (A), or 1% SLS + 10 mM Mb-
Cu (X), inoculated with L. monocytogenes (-6.3 log CFU/frank), then vacuum-packaged. 
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Figure 5. Mean populations of L. monocytogenes (MOX) on the surface of frankfurters 
without or with 2% sodium lactate in the formulation, during storage at 10°C. Samples 
were left untreated (•) or were surface-treated with 10 mM Mb-Cu (•), 1% SLS (A), or 
1% SLS +10 mM Mb-Cu (X), inoculated with L. monocytogenes (-6.3 log CFU/frank), 
then vacuum-packaged. 
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Figure 6. Mean total microbial populations (TSAYE) on the surface of frankfurters 
without or with 2% sodium lactate in the formulation, during storage at 10°C. Samples 
were left untreated (•) or were surface-treated with 10 mM Mb-Cu (•), 1% SLS (A), or 
1% SLS +10 mM Mb-Cu (X), inoculated with L. monocytogenes (-6.3 log CFU/frank), 
then vacuum-packaged. 
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Figure 7. Mean LAB populations (MRS) on the surface of frankfurters without or with 2% 
sodium lactate in the formulation, during storage at 10°C. Samples were left untreated (•) 
or were surface-treated with 10 mM Mb-Cu (•), 1% SLS (A), or 1% SLS + 10 mM Mb-
Cu (X), inoculated with L. monocytogenes (-6.3 log CFU/frank), then vacuum-packaged. 
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Figure 8. Mean pH values of untreated frankfurters, after surface treatment, and following 
storage at 4°C for 84 days and 10°C for 56 days. Values represent the means of at least 
three surface measurements ± SD (error bars). Letters indicate significant differences 
(P<0.05) between means within a given formulation grouping. 
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CHAPTER 6. THE ANTIMICROBIAL MODE OF ACTION OF 
METHANOBACTIN AGAINST LISTERIA MONOCYTOGENES 

SCOTT A INVOLVES INHIBITION OF RESPIRATORY FUNCTION 

A paper to be submitted to Applied and Environmental Microbiology 

Clinton L. Johnson1, Aubrey F. Mendonca1*, Alan A. DiSpirito2, 
Anthony L. Pometto III1, and James S. Dickson3 

ABSTRACT 

Methanobactin, a novel chromopeptide appears to fulfill multiple roles including copper 

sequestration and/or detoxification, delivery, and induction of pMMO activity possibly by 

increasing electron flow in the producer-organism Methylosinus trichosporium OB3b. 

Recently, studies revealed that copper-bound methanobactin (Mb-Cu) is bactericidal to the 

foodborne pathogen L. monocytogenes. The objectives of this study were to gather 

preliminary evidence regarding the potential mode of action of Mb-Cu against this 

pathogen. The influence of Mb-Cu on the time-kill kinetics, cell lysis, leakage of UV-

absorbing material, and respiration of L. monocytogenes were all determined in MES buffer 

(pH 6.0). Mb-Cu displayed dose-dependent lethality against L. monocytogenes Scott A. 
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After 2 h, populations were reduced by 3.92, 5.97, and 6.59 log-cycles for 125, 500, and 

2000 pM, respectively; when determined on Modified Oxford (MOX) agar. Counts were 

similar on tryptic soy agar plus 0.6% yeast extract (TSAYE), indicating there was little to 

no injury. No lysis was observed by monitoring the absorbance (595 nm) of bacterial 

suspensions, but for all the aforementioned concentrations, at least some leakage of 260 and 

280 nm-absorbing material was detected in culture filtrates. In addition, respiration was 

inhibited in a dose-dependent manner, at Mb-Cu concentrations as low as 7.81 pM, with 

almost complete loss at 1000 jiM. Loss in L. monocytogenes respiratory function was rapid 

and could be detected at the lowest Mb-Cu concentration tested. Collectively, these results 

indicate that the cell membrane is a likely candidate for the biological target of Mb-Cu 

against L. monocytogenes. More studies are needed to determine the precise binding 

requirement and/or receptor on cell surfaces, as well as the effect of Mb-Cu on the 

bioenergetics and leakage of other cellular constituents of L. monocytogenes. 

INTRODUCTION 

It has been established for many years that lactic acid bacteria (LAB), 

actinomycetes (i.e. Streptomyces spp.), and plant-dwelling bacteria (i.e. Pseudomonas spp.) 

are major groups of organisms known for their production of distinctly different classes of 

antimicrobial compounds. LAB produce a wide variety of antagonistic agents, namely 

organic acids, low MW compounds (i.e. reuterin and methylhydantoin), and bacteriocins (8, 

30). The latter group of compounds is a large and fairly diverse set of peptides or proteins 

that are typically active against only closely-related organisms, with the exception of 
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lantibiotics. Actinomycetes are free-living widely distributed bacteria that are noteworthy 

as antibiotic producers (7). Pseudomonads are well characterized in their production of 

siderophores, extracellular iron-chelating molecules that play a major role in their complex 

iron metabolism. Within several major classes, there is wide variety of known 

proteinaceous siderophores produced by these organisms (17). Cyclic lipopeptides (29) and 

mainly siderophores, produced by Pseudomonas spp., have been shown to inhibit the 

growth of other bacteria (5, 9, 37). 

Another important group of environmental bacteria that may also produce a distinct 

class of antimicrobial are methanotrophs. This group of organisms plays an integral role in 

global carbon cycling, where they are characterized by their ability to oxidize methane as a 

sole carbon and energy source via soluble methane monooxygenase (sMMO) and 

particulate methane monooxygenase, or pMMO (23). It is well established that the 

regulation between these two enzymes is tightly regulated by copper concentration (34), 

where under low copper-to-biomass ratios methane oxidation occurs through sMMO, but at 

high copper-to-biomass ratios sMMO activity is suppressed and pMMO is active. Studies 

on Methylosinus trichosporium OB3b constitutive sMMO mutants revealed the presence of 

extracellular copper solubilization even when pMMO could not be used in copper-

containing media. It was suggested that the organism may excrete a copper-complexing 

agent similar to siderophores (18). This compound was originally thought to be a cofactor 

for pMMO in Methylococcus capsulatus Bath (42), and further studies on the previously 

mentioned sMMO0 mutant indicated that uptake or association of these so-called copper-

binding ligands was prevented by this phenotype (38). DiSpirito et al. (15) demonstrated 
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that so-called copper-binding compounds produced by this organism had the highest 

concentrations present in the spent media when cells expressed pMMO and were stressed 

for copper, at the switch-over point between the two MMOs. Both of these studies isolated 

break-down components of what is now known as methanobactin. 

Improvements in the isolation and purification of copper bound-methanobactin 

(Mb-Cu; 1217 Da) revealed the structure (26,28) of what is now called a chalkophore, 

analogous to iron-binding siderophores (27). It is composed of a tetrapeptide, a tripeptide, 

and several unusual moieties, including a thionylhydroxyimidazolate, 

hydroxythionylimidazolate, pyrrolidine, and N-terminal isopropylester group. The role of 

this molecule is thought to be involved in copper sequestration and/or detoxification, 

handling, and uptake in methanotrophic bacteria due to the physiological importance of 

copper in these organisms. Recent studies on methanobactin indicate that it: may be 

synthesized by a nonribosomal peptide synthetase (NRPS; 39), possesses strong superoxide 

dismutase-like activity (12), chelates various metals (Choi et al., submitted for publication), 

and stimulates pMMO activity possibly by increasing electron flow to the enzyme's type II 

Cu(II) centre(s) (10). Apo-methanobactin (Mb) binds Cu (I) or (II) where the former is 

found in the holo-form (10, 11,21,42). Finally, a model for copper binding by 

methanobactin has been proposed (11) which is based heavily on the potential of this 

chromopeptide being a "moonlighting protein", or protein which can serve multiple 

functions depending on conditions. 

Methanobactin is considered analogous to the siderophore, and likely has a number 

of roles in methanotroph physiology. Investigations of copper-bound methanobactin (Mb-
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Cu) antagonistic activity against the problematic foodborne pathogen, Listeria 

monocytogenes were conducted previously in our laboratory. Studies revealed that Mb-Cu 

is highly bactericidal to the pathogen and activity was optimum at pH 6.0. In broth media 

the minimum inhibitory concentration (MIC) was 4.11 mM, and at this concentration large 

reductions in bacterial populations occurred. Activity appeared to be an "all-or-nothing" 

event and such drastic cell death indicated that the bacterial cell membrane could be a likely 

target, possibly involving increased permeability or lysis. We hypothesized that this 

chromopeptide may function against L. monocytogenes in a similar fashion to previously 

described common mode of action for many antimicrobial peptides. Therefore, the 

objectives of this study were: (i) Determine if death kinetics behave in a dose-dependent 

manner; (ii) Determine if Mb-Cu induces gross cell leakage and/or lysis; and (iii) Examine 

Mb-Cu effects on respiration. 

MATERIALS AND METHODS 

Microorganism and inoculum preparation. L. monocytogenes Scott A NADC 

2045 serotype 4b (human isolate from a 1983 milk outbreak) was obtained from the 

National Animal Disease Center, Agricultural Research Service (United States Department 

of Agriculture, Ames, LA), and used throughout the study. Prior to the experiments, L. 

monocytogenes cultures were confirmed by streaking onto Modified Oxford (MOX) agar, 

followed by gram-staining, oxidase and catalase tests, and API test kit verification. The 

culture was maintained as frozen (-20°C) stock in tryptic soy broth (Difco, Becton 

Dickinson and Co., Franklin Lakes, NJ) supplemented with 0.6% (wt/vol) yeast extract 
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(Difco; TSBYE) and 10% (vol/vol) glycerol. Prior to each experiment, the stock culture 

was transferred twice in 10 ml of brain heart infusion (BHI; Difco) broth and incubated at 

32°C for 18 h. The inoculum (>30 ml) was then harvested by centrifugation (10,000 x g, 

10 min) in a refrigerated (4°C) centrifuge (Sorvall Super T21; DuPont Instruments, 

Wilmington, DE), and cells were washed twice in 0.02M 2-morpholinoethanesulfonic acid 

(MES) buffer (pH 6.0; Sigma, St. Louis, MO). The inoculum was resuspended in 0.1 M 

MES buffer (pH 6.0) and depending on experiment, volumes differed. Inocula used for the 

time-kill and leakage experiment were not adjusted (~109 CFU/ml; assay concentration was 

~108/ml) while the inocula used for monitoring lysis and respiration were concentrated 

(-6.3 x 109 and 1.6 x 1010 CFU/ml, respectively). A final cell concentration of ~109/ml 

was used for each assay. 

Methanobactin preparation. Lyophilized Mb-Cu samples (referred to as 

methanobactin throughout this paper) were prepared using a modified protocol previously 

described by Choi et al. (12). Mb-Cu samples were transferred to sterile 125-mm screw-

capped test tubes, placed in Seward stomacher bags (Seward Ltd., London, England), and 

held on ice for one hour prior to irradiation. Samples were sterilized via electron-beam 

irradiation at the Iowa State University Linear Accelerator Facility, which has a MeV 

CIRCE III Linear Electron Accelerator (MeV Industrie S. A., Jouy-en-Josas, France). 

Samples were sterilized by irradiation at >30 kGy in the electron beam mode at an energy 

level of 10 MeV and an average dose rate of 58 kGy/min. Absorbed radiation doses were 

determined by the use of 5 (diameter) by 5 mm (length) dosimeter alanine pellets (Bruker 
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Analytische Messtechnik, Rheinstetten, Germany) placed on the top and bottom surfaces of 

one stomacher bag containing Mb-Cu samples. Immediately after irradiation, the pellets 

were placed in a Bruker EMS 104 EPR Analyzer to measure absorbed doses by electron 

paramagnetic resonance. The average absorbed dose was obtained from the arithmetic 

average of the top and bottom surface readings. Sterile samples were stored at -20°C and 

held for no longer than 2 months. 

Time-kill studies. A 2.2 mM Mb-Cu stock solution was prepared aseptically in 

0.1M MES buffer (pH 6.0) and appropriate dilutions were made in 125-ml Erlenmeyer 

flasks to give 125, 500, and 2000 pM final assay concentrations. Preliminary studies 

indicated these three concentrations represent the middle and extreme ends of bactericidal 

activity in buffer, but were quite lower than MICs determined in BHI broth. Treatment and 

control flasks were placed inside a gyratory shaker water bath (Model G76; New 

Brunswick Scientific Co. Inc., Edison, NJ) set at 32°C. After pre-warming, the washed L. 

monocytogenes inoculum (3-ml aliquots) prepared as previously described, was added to 

the flasks and incubated for 2 h while shaking at 150 rpm. At 10-min intervals samples 

were pulled from the treatment and control flasks, serially-diluted in 0.1% peptone water 

(Difco), and surface-plated, in duplicate, onto tryptic soy agar (Difco) supplemented with 

0.6% (wt/vol) yeast extract (Difco; TSAYE) and MOX agar. Initial counts were 

determined by plating the washed inoculum onto TSAYE and MOX agar. All inoculated 

plates were incubated aerobically at 32°C and bacterial colonies were counted at 72 h. 
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During this experiment, samples were taken from the flasks to measure leakage of UV-

absorbing material. 

Measurement of UV-absorbing material leakage. These experiments were used 

as indicators of the loss of cell membrane integrity of L. monocytogenes (16). Samples for 

these experiments were taken in parallel with time-kill studies and thus, were collected 

from the same flasks (control, 125, 500, and 2000 gM Mb-Cu). At selected time intervals, 

up until 60 minutes, samples were removed and filtered through sterile 0.2-gm, 25-mm 

polyethersulphone (PES) syringe filters (Whatman Inc., Florham Park, NJ) into clean, 

sterile vials. Samples of filtrate (2-ml aliquots) were immediately frozen at -20°C and 

stored for <1 week before analysis. Non-inoculated control and treatment samples were 

also prepared for use as blanks. Filtrates were thawed to room temperature (-30 min), then 

transferred (100-p.l aliquots except for 2000 p.M) to 96-well, round-bottom, polystyrene 

microliter plates (Becton Dickinson, Franklin Lakes, NJ). Mb-Cu concentrations at 2000 

(xM were found to absorb outside the limit of detection for the instrument, thus these 

samples, including blanks, were diluted 10-fold in buffer prior to taking readings. 

Absorbance of the samples were measured at 260 (nucleic acids) and 280 nm (nucleic acids 

+ proteins) using a SpectraMax M5/M5e microplate reader (Molecular Devices, Chicago, 

IL; wavelength range ± accuracy: 200-1000 ± 2.0 nm; photometric range ± accuracy: 0-4.0 

< ± 0.006 OD ± 1.0%, 0-2 OD) equipped SoftMax Pro Software v5.0 (Molecular Devices). 

Each replicate of the experiment was performed in triplicate and raw data was corrected 

using Abs260or280 values associated with the blanks. 
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Determination of cell lysis. A 4.8 mM Mb-Cu stock solution was prepared 

aseptically in 0.1M MES buffer (pH 6.0) and 2-fold dilutions were made in small culture 

tubes to give assay concentrations ranging from 4000 to 7.81 pM. Samples were 

transferred (100-pl aliquots) to the microtiter plates described above and followed by 

inoculation (20 gl) with L. monocytogenes culture, prepared as described earlier. The plates 

were incubated statically at 32°C and absorbance readings (595 nm) were taken periodically 

for up to 24 h using a Model 550 microplate reader (Bio-Rad Laboratories, Hercules, CA), 

after 10-sec agitation. Each control and treatment replicate was performed in triplicate, and 

raw Abss95 values were corrected using blanks prepared by the addition of buffer instead of 

cell suspension to the samples. 

Measurement of oxygen consumption. Experiments were conducted to determine 

the effect of Mb-Cu on the respiration of L. monocytogenes. A 12 mM Mb-Cu stock 

solution was prepared aseptically in 0.1M MES buffer (pH 6.0) and 2-fold dilutions were 

prepared in small culture tubes to give assay concentrations ranging from 4000 to 7.81 jiM. 

Oxygen uptake was measured at 23.5 ± 0.5°C with a Clark-type oxygen probe (Biological 

Oxygen Monitor, Model 5300; YSI Co., Yellow Springs, OH) immersed in a magnetically 

stirred sample chamber containing 0.1M MES buffer (pH 6.0). The inoculum was injected 

into the chamber (~109 CFU/ml assay concentration) followed by addition of Mb-Cu. After 

5 minutes, glucose (10 mM assay concentration; Sigma) was added as substrate, and 

oxygen consumption was monitored under constant stirring. 
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Data analysis. All experiments were repeated at least twice; microbiological counts 

(logio CFU/ml), corrected absorbance readings (260, 280, and 595 nm), and oxygen 

consumption rates (%0% min"1) are reported as means. Analysis of variance was used to 

determine significant differences among mean values following the Tukey-Kramer 

adjustment. Differences were considered statistically significant when the associated P-

value was less than 0.05. 

RESULTS 

Methanobactin time-kill effects on L. monocytogenes. The results of the time-kill 

studies are shown in Figure 1. As expected, MES buffer had no effect on the viability of L. 

monocytogenes. Exposure to Mb-Cu for 2 h resulted in 3.92, 5.97, and 6.59 log-reductions 

(MOX) for 125, 500, and 2000 |j,M, respectively; while on TSAYE these reductions were 

3.60, 6.58, and 6.73 log-cycles. This shows there was little difference in total reductions 

between the 2 higher Mb-Cu concentrations (P>0.05) or between media type. However, 

there were some differences in recovery between the two media types at earlier sampling 

times. Overall, L. monocytogenes counts were higher on MOX agar than TSAYE, where 

this was especially noticeable for both the 125 pM treatment and at early sampling times 

(up to ~2 log difference). As Mb-Cu concentration increased, higher counts on TSAYE 

than MOX were observed at earlier time intervals. For example, at 500 p,M, counts on 

TSAYE did not exceed those on MOX until 40 min, but at 2000 jliM this occurred at 20 

minutes. In general, kill curves determined by plating on TSAYE were more linear than 

those derived from using MOX (based on R2 values; data not shown) with a slight "dip" at 
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intermediate times. MOX kill curves were slightly sigmoidal-shaped, where more rapid 

killing occurred at earlier times as Mb-Cu concentration increased. The rate of L. 

monocytogenes death was most rapid at <20 min for MOX and <10 min for TSAYE, 

especially at 2000 |iM of Mb-Cu (P<0.05), followed by fairly similar kinetics among Mb-

Cu concentrations for the duration of incubation. Curves tended to "tail off' slightly for 

125 jliM of Mb-Cu though. Results show that Mb-Cu does displayed dose-dependent 

effects on the viability of L. monocytogenes; differences were mainly seen early during 

incubation, and higher Mb-Cu concentrations tended to generate larger death rates sooner. 

In addition, there did not seem to be a major benefit of using 2000 of gM Mb-Cu compared 

to 500 pM against L. monocytogenes in buffer. 

Effect of methanobactin on leakage of UV-absorbing material and cell lysis. In 

general, leakage of 260 and 280 nm-absorbing material from L. monocytogenes cells 

increased over time in the presence of Mb-Cu (Figure 2), however, only increases from 

exposure of cells to 125 of pM Mb-Cu were significant (P<0.05). The highest level of 260 

nm-absorbing material was 0.022, 0.025, and 0.044 absorbance units for 125, 500, and 2000 

|o.M Mb-Cu, respectively. At 280 nm, these were 0.083, 0.048, and 0.122 absorbance units. 

Significant differences (P<0.05) among Mb-Cu treatments at a given sampling time were 

only found at 60 minutes for 260 nm-absorbing material, and 45 minutes for 280 nm-

absorbing material. Compared to the control, Abszeo and Abs^o were largest for 2000 p.M 

of Mb-Cu at 60 minutes, while 125 p,M of Mb-Cu Absaso were largest at 45 minutes. 

Results to this experiment showed high variability overall, which limits its value in making 
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inferences related to Mb-Cu's mode of action. In addition, correlations between UV-

absorbing material leakage rates to that of cell death or cell death rates were modest ranging 

from -0.5 to 0.7 (data not shown). Although very little statistical significance was found 

amongst these data, the increases in UV-absorbing material may be of biological 

significance. For example, at 60 minutes, samples containing 125, 500, and 2000 p,M of 

Mb-Cu had 11, 12.5, and 22 times the amount of 260 nm-absorbing material, respectively, 

compared to the control. Similar behavior was seen with 280 nm-absorbing material 

leakage, however when leakage is evaluated this way, leakage amounts of 260 nm-

absorbing material was about 7-8 times that of 280 nm-absorbing material. 

Contrary to preliminary indications in broth media, monitoring changes in cell 

suspension Abs^ (-0.3), in buffer, did not demonstrate any detectable cell lysis (data not 

shown) by these methods. Changes were not larger at any Mb-Cu concentration from that 

of the control for a 24-h incubation period. 

Effect of methanobactin on respiration. Figure 3 displays the effect of varying 

concentrations of Mb-Cu on O2 consumption and consumption rates by L. monocytogenes. 

The addition of glucose to the system is indicated by the arrow (Figure 3A), occurring after 

a 5-minute incubation period of Mb-Cu with the pathogen. Calculated rates (Figure 3B) 

clearly demonstrate dose-dependent effects of Mb-Cu on O2 consumption, or respiration 

rate, of L. monocytogenes. At a concentration as little as 7.81 |iM, the respiration rate 

decreased due to Mb-Cu activity (P>0.05). Significant decreases in respiration rate were 

only observed at Mb-Cu concentrations of >125 pM (P<0.05). Almost complete inhibition 
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of respiratory activity occurred with a treatment of 1000 to 4000 jxM of Mb-Cu (P<0.05). 

Respiration rate as a function of Mb-Cu concentration generated a near perfect linear fit as 

shown in Figure 3. Simply put, for every doubling in Mb-Cu concentration, the respiration 

rate decreased by 0.42% O2 per minute. Good correlations were found between respiration 

rate and cell viability (R2>0.98), and respiration rate and death rates (R2>0.90), while the 

relationship between UV-absorbing material leakage rate and respiration rate were modest 

(data not shown). At any rate, there was a demonstrated Mb-Cu-induced loss in respiratory 

activity when Mb-Cu was incubated with L. monocytogenes for 5 minutes prior to substrate 

addition. In contrast, viability loss could not be detected until after 10 minutes and 

significant leakage of UV-absorbing material even later, when exposed to 125 |xM of Mb-

Cu. 

DISCUSSION 

The preliminary evidence presented here may help lay the ground work for further 

elucidation of the antimicrobial mode of action of Mb-Cu against L. monocytogenes Scott 

A. Concentrations used in the present study were far lower than those used in earlier work 

that determined the MICs in broth media (data not shown). For example, in BHI (pH 6.0), 

4.11 mM of Mb-Cu was determined as the MIC, while in a later study 2.06 mM was 

considered the MIC when buffer was included in the growth media. Reductions in viable 

cell populations were nearly 5 log- and >5 log-cycles for these studies, respectively. This 

demonstrates that MICs may not necessarily be the appropriate concentrations to use when 

trying to determine the mode of action of antimicrobials. In the present study 125 |iM of 
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Mb-Cu could generate a 4-log reduction in 2 hours while in broth media, a concentration of 

at least 32 times this was needed to reduce populations (unpublished data). It should also 

be noted that initial populations were 1.5 logs higher in this study than in previous work. It 

seems plausible that components of broth media may interfere with Mb-Cu activity. 

Mb-Cu appears to inactivate L. monocytogenes in a dose-dependent manner where 

in buffer, this was found mainly between 62.5 (data not shown) and 500 gM. Although use 

of 2000 (iM of Mb-Cu resulted in slightly higher death rates than 500 jiM, these differences 

were mainly found during the first 10 minutes of incubation, and slopes appeared parallel 

thereafter. Reduction profiles caused by Mb-Cu are similar to reductions caused by other 

peptide antimicrobials such as bacteriocins. However, amounts are difficult to compare 

because bacteriocin or activity units (BU or AU) and arbitrary units (AU) are typically 

based on amounts needed to reduce a percentage of growth measured by absorbance, or 

create a zone of clearing on an agar plate. For instance, 10,000 BU/ml of camocin UI49 

(36), which is 10,000 times the amount needed to inhibit growth by 50%, reduced 

populations of LAB by 6 log-cycles in 4 hours, in buffer. Studies on Lactostrepcin 5 

indicated at least 200 AU s calculated by these means were needed to reduce Streptococcus 

cremoris 202 by 3 log-cycles (43). Based on results of our study, a Mb-Cu concentration 

32 times less than the MIC could reduce L. monocytogenes by 4 log-cycles, in 2 hours. 

From this standpoint, Mb-Cu is far more effective at killing susceptible cells than these 

bacteriocins. Nisin, on the other hand completely eliminated L. monocytogenes using 0.3 

Hg/ml (1), a far lower concentration than that of Mb-Cu used in the present study. Killing 

potential by Mb-Cu also seems to be better in comparison to other antimicrobial peptides as 
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well. Protamine concentrations >10,000 (ig/ml were required to have any listericidal 

activity (22). Friedrich et al. (19) tested six cationic peptides against Staphylococcus spp. 

and found that at 10 times the MIC, none had exceeded 4-log reductions of the indicator 

strains. However, it is worth mentioning that the MICs found in the latter study were all 

lower than that of Mb-Cu on a molarity basis. 

Prior to the onset of these experiments, we felt that Mb-Cu-induced cell lysis could 

be a probable mode of action since negative absorbance readings were found to occur at 

higher Mb-Cu concentrations and the cut-off between growth and death was a fine line. No 

direct evidence of cell lysis could be demonstrated in the present study based on monitoring 

absorbance at 595 nm. One major difference between the previous studies and the present 

is that an exogenous energy source was provided in the former (broth media), but it is not 

known whether this can be attributed to the discrepancy. Studies have shown that 

energized cells versus non-energized cells differ in susceptibility to some bacteriocins but 

differences tend to be opposite of that described here (33,40,43), thus this may not be a 

credible explanation. Methodology used to determine cell lysis varies by 

spectrophotometry determination (595 to 660 nm) and microscopy methods can also be 

used (6,25). Possible improvements used in the present study would have been to follow 

the growth of L. monocytogenes in broth spectrophotometrically, and "spike" the culture 

with Mb-Cu at a designated time interval to view changes in absorbance (32). Although 

this may improve sensitivity, there is no indication of cell lysis occurring based on methods 

used in the present study. 
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The first sign of an increase in membrane permeability is usually provided by the 

leakage of UV-absorbing material and other metabolic pool materials (16). Absorbance 

increases were not found to be particularly significant; however, these increases could be of 

biologically significance. Leakage of 260 nm-absorbing material in the present study may 

be of lower magnitude (<0.044 Abs units) since starvation of Arthrobacter crystallopoietes 

resulted in values in excess of 1.4 Absaeo units. However, Carson et al. (6) converted 260 

nm-absorbing material leakage amounts to proportions, and attributed tea tree oil-induced 

S. aureus cell death, in part, to 260 nm-absorbing material leakage. Conversion of the data 

in the present study by these means would demonstrate far more leakage than their study. 

Additionally, the application of pulsed electric fields on L. monocytogenes (35) and L. 

innocua (2) generated very similar values to the present study. The most extreme 

treatments in those reports generated leakage amounts similar to 2000 pM Mb-Cu. Of 

more consequence, the lowest Mb-Cu concentration used (125 juM) also seemed to induce 

leakage. This may imply that because some leakage occurs at the lowest concentration 

used, and cell death occurred by this treatment, increases in membrane permeability may be 

a primary cause for Mb-Cu lethality. One major source of variability that probably 

contributed to the high variance in calculated UV-absorbing leakage amounts is that Mb-Cu 

absorbs readily in the UV range (27). In addition, copper-bound methanobactin in a 1:1 

molar ratio (as used in the present study) produces a distinctive peak at 282 nm (11). 

Although the proper use of samples to correct raw data can eliminate this characteristic, it is 

highly dependent upon accuracy of sample volumetric measurement. Given that leakage of 

L. monocytogenes cells may be indicated by small increases in filtrate UV absorbance 
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values, especially in relation to the absorbance of Mb-Cu, it may be desirable to establish a 

method of eliminating the compound from the filtrate prior to measurement (16). 

Mb-Cu-induced loss in respiratory activity of L. monocytogenes was clearly shown 

in the present study. Also, out of the other experiments conducted within this work, it 

appears that this cellular function was the most sensitive to Mb-Cu. A decrease in 

respiration rate was found in the presence of the lowest Mb-Cu concentration and this 

appeared after only 5 minutes of Mb-Cu exposure, where leakage and viability loss were 

shown later. This may indicate that Mb-Cu inhibits respiration by directly acting on a 

respiratory enzyme(s) or function(s), or permeabilizing the cytoplasmic membrane. Recent 

evidence has shown that Mb-Cu can increase the electron flow to the type II Cu (II) 

centre(s) of pMMO in Methylococcus capsulatus Bath (10). In addition, other redox-active 

extracellular siderophores have been found to shuttle electrons between reduced and 

oxidized compounds in association with respiration, and some virulence factors connections 

are being drawn (24). Siderophores exhibit structural and conformational specificities to fit 

into membrane receptors and/or transporters, which also may apply to Mb-Cu, to some 

extent (41). Based on these points, it is conceivable that Mb-Cu may in fact interact with 

the respiratory chain, at some point, thereby blocking its activity. However, this 

mechanism alone might not necessarily lead to cell death as L. monocytogenes can generate 

ATP by multiple fermentation pathways (20). In addition, loss in viability (only slight) 

could not be detected until the use of 62.5 pM Mb-Cu (data not shown), with more apparent 

death at 125 pM. Disruption of membrane organization and function may also lead to 

decreased respiratory activity, which has been shown for protamine against L. 
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monocytogenes and Shewanella putrefaciens (25). Also, insect defensin forms voltage-

dependent channels in Micrococcus luteus, leading to inhibition of respiration (14). No 

stimulation of respiration was seen in these two studies, indicating they do not necessarily 

act as uncouplers (31). This was not observed in the present study either, but was shown 

with the small peptide linenscin OC2 against L. innocua (4). 

In summary, the results of this study indicate that the cytoplasmic membrane is the 

likely biological target of Mb-Cu's inhibitory action against L. monocytogenes, without 

concurrent cell lysis. Overall, cell viability decreased fairly rapidly in buffer in a dose-

dependent manner, at least some leakage of UV-absorbing material was observed, and 

respiratory activity was strongly inhibited. Little to no injury could be demonstrated using 

selective and non-selective media, a result that supports structural changes of the 

membrane, rather than physiological or metabolic damage (2). Further support of cell 

membrane alteration or damage is that we have not been able to demonstrate any Mb-Cu 

bacteriostatic activity, only bactericidal (3). It is tempting to speculate that Mb-Cu may 

interact with the cytoplasmic membrane by binding a respiratory enzyme, thereby causing 

inhibition. Binding of the if-translocating ATPase cannot be ruled out, nor binding of 

phospholipids within the membrane. Small pores may be formed or major disruption could 

be a likely cause of UV-absorbing material leakage, leading to the collapse of membrane 

potential, and subsequent loss in energy. Without an intact cytoplasmic membrane, L. 

monocytogenes would not be able to carry out essential cellular functions such as 

compartmentalization, transport, and energy production, among others. If small pores are 

indeed formed, it is likely prerequisite that Mb-Cu would have to be able to oligomerize or 
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"stack" up on itself, a behavior that has been suggested to occur with this compound, 

consistent with other moonlighting proteins (11). Further study is needed to conclusively 

determine the mode of action of Mb-Cu. The use of lipid vesicles (carboxyfluorescein 

filled) and protoplasts prepared from L. monocytogenes Scott A cells could help determine 

whether Mb-Cu binds with a component of peptidoglycan, cell membrane lipids, or cell 

membrane proteins. Also, cytoplasmic membrane vesicle preparations made from the 

pathogen and in vitro investigation on the activities of ATPase and respiratory enzymes 

could determine whether Mb-Cu directly inhibits respiration. Studies on the effects of Mb-

Cu-induced leakage of other cellular constituents such as protons, K+, amino acids, and 

ATP, as well as cellular bioenergetics, such as A ¥ and ApH, are warranted. Determination 

of the precise mode of action of this novel biopreservative will be useful in determining 

other suitable compounds to use along with Mb-Cu as synergists. This could lead to a more 

effective means for controlling L. monocytogenes in foods. 
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MOX 

TSAYE 

Figure 1. Mean survival curves of £ monocytogenes Scott A determined by plating on 
MOX and TSAYE after exposure to Mb-Cu in O.IM MES buffer (pH 6.0) at 32°C for 2 h. 
T r e a t m e n t s  i n c l u d e :  c o n t r o l  ( • ) ,  1 2 5  f i M  ( • ) ,  5 0 0  p M  ( A ) ,  a n d  2 0 0 0  p M  ( X )  
methanobactin (n=3). 
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Figure 2. Appearance of 260 and 280 nm-absorbing material in the filtrates of L. 
monocytogenes Scott A (~108 CFU/ml) control suspensions and after treatment with 125, 
500, or 2000 gM methanobactin in O.IM MES buffer (pH 6.0). Values (corrected) 
represent the means of three replicates (each done in triplicate) ± SD (error bars) as 
determined by spectrophotometric measurement. Letters indicate significant differences 
(P0.05) within a treatment grouping (n=3). Non-inoculated control and treatment samples 
were used as blanks 
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Figure 3. Effect of methanobactin on oxygen consumption curves (A) and rates (B) by L. 
monocytogenes Scott A (~109 CFU/ml) in 0.1 M MES buffer (pH 6.0) at 23.5°C. Values 
represent the means of three replicates ± SD (error bars) as determined by electrode 
measurement. Letters indicate significant differences (P<0.05) between treatment means 
(n=3). 
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CHAPTER 7. GENERAL CONCLUSIONS 

CONCLUSION 

It is clear that Listeria monocytogenes is a deadly foodborne pathogen that has 

gained a significant amount of attention due to its ubiquity in nature, resistance in the food 

processing environment, ability to grow at refrigeration temperatures, and implication in 

recent outbreaks associated with ready-to-eat (RTE) meat products. In response to changes 

in consumer preferences, many investigators have focused research efforts on the use of 

naturally-produced and novel antimicrobial systems for activity against the pathogen, and 

their potential use in RTE meats and other food products. As previously mentioned, 

methanobactin is a naturally occurring compound that is produced by the methanotrophic 

bacterium, Methylosinus trichosporium OB3b. Results described in this dissertation are the 

first to report the antimicrobial activity of methanobactin against a foodborne pathogen. 

Specifically, our studies on this compound for use against L. monocytogenes determined: 

minimum inhibitory concentrations (MICs) as influenced by pH, bactericidal versus 

bacteriostatic activity, its affect on growth, the influence of surfactants at two 

concentrations on activity, its use as a surface treatment in an antimicrobial system for 

frankfurters, and potential antimicrobial mode of action. 

These studies indicate that methanobactin is highly bactericidal against L. 

monocytogenes displaying little to no bacteriostatic activity. Additionally, activity was 

highest at pH 6.0 where there was a non-linear relationship between the MIC of 

methanobactin and pH. The use of the non-ionic surfactants, Tween 20 and Tween 80 

antagonized methanobactin activity, where this effect was more pronounced with increasing 
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pH and surfactant concentration. In contrast, sodium lauryl sulfate when used alone and in 

combination with methanobactin displayed high lethality, where the latter treatment was 

shown to be synergistic. This system allowed the use of lower methanobactin amounts to 

achieve the same desired effect as when it is used alone at a higher concentration. 

Frankfurters that were surface-treated with methanobactin, sodium lauryl sulfate, and their 

combination showed moderate initial reductions and growth inhibition of the pathogen 

during product storage. Formulating frankfurters with 2% sodium lactate did not 

completely inhibit the pathogen for the length of the study; however, counts were similar to 

initial numbers due to initial lethality caused by surface treatments. It was concluded that 

the system showed moderate activity on this cured RTE meat product against L. 

monocytogenes. Studies conducted to generate preliminary evidence on the mode of action 

of methanobactin against the pathogen demonstrated: Dose-dependent killing kinetics over 

a very narrow concentration range, dose-dependent loss in respiratory activity, and low 

leakage of UV-absorbing material without lysis. It was concluded that the cell membrane is 

a likely candidate for the biological target of methanobactin against L. monocytogenes. 

Overall, methanobactin was shown to have good potential in controlling the 

presence of L. monocytogenes on foods, with many possibilities remaining for improving 

activity. Not only does methanobactin need to be further characterized, but its use on foods 

warrants further investigation. 
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RECOMMENDATIONS FOR FUTURE RESEARCH 

Research remaining on methanobactin food-use is quite extensive. It is much more 

logical to determine whether a novel compound possesses antimicrobial activity in model 

and applied systems prior to determining safety, due to the length of time and subsequent 

costs the latter studies require. Because this compound has been shown to possess 

antimicrobial properties against L. monocytogenes both in vitro and on a food product, 

work evaluating its safety should be a main research topic. Of course, this antimicrobial 

must not be toxic to test animals and humans, based on several studies. It is also important 

that the antimicrobial be metabolized and excreted by the body. Finally, the compound or 

its breakdown products should also not result in buildup of residues in body tissues. 

Methanotrophic bacteria have been used for single-cell protein (SCP) production and very 

large quantities of Mb-Cu are produced by these organisms, thus safety concerns of Mb-Cu 

at this point seem negligible. 

Although there is more work to be done in regards to methanobactin activity against 

L. monocytogenes, nothing is known about its activity against gram-negative bacteria. It 

may prove to be a very effective bactericide against gram-negative pathogens, despite the 

possibility of having to use chelators such as EDTA. 

To improve delivery, other surfactants should be evaluated for compatibility with 

methanobactin, and concentrations need to be optimized. Coupling methanobactin with 

other antimicrobials such as organic acids, bacteriocins, or any other naturally-occurring 

substances is yet to be determined. In addition, it is not known whether methanobactin can 
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sensitize L. monocytogenes to other types of physical or chemical processing methods and 

vice versa. Coupling these treatments as hurdles also remains to be investigated. 

Production of methanobactin on a larger scale would be critical to commercialize 

the product for use in antimicrobial hurdle systems for use on foods. The ability to do this 

seems very feasible at this point. 
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